

Praise for other books by Michael W Lucas

FreeBSD Mastery: ZFS

“Once again, a great FreeBSD book to read” — Wendy Michele,
nixCraft

“ZFS Mastery covers what everyone using or administering these
filesystems needs to know to work with them every day. It’s fascinating
to see how the system is used, having seen how it is implemented.” —
George V. Neville-Neil, co-author of “Design and Implementation of the
FreeBSD Operating System”

Networking for Systems Administrators

“There is a lot of useful information packed into this book. I

recommend it!” — Sunday Morning Linux Review, episode 145

After reading this book, you'll have a strong footing in networking.
Lucas explains concepts in practical ways; he makes sure to teach

tools in both Unix/Linux and Windows; and he gives you the terms
you’ll use to explain what you're seeing to the network folks. Along the
way there’s a lot of hard-won knowledge sprinkled throughout...” —
Slashdot

FreeBSD Mastery: Specialty Filesystems
“a joy and treasure to read” — Vivek Gite, nixCraft

“I'm a fan of his books... he presents them in a way that makes them
much more understandable. He has the right mix of humor and

information.” — Sunday Morning Linux Review

Sudo Mastery
“It's awesome, it’s Lucas, it’s sudo. Buy it now.” — Slashdot

“Michael W Lucas has always been one of my favorite authors because
he brings exceptional narrative to information that has the potential
to be rather boring. Sudo Mastery is no exception.” — Chris Sanders,

author of Practical Packet Analysis

Absolute OpenBSD, 2nd Edition

“Michael Lucas has done it again” — cryptednets.org

“After 13 years of using OpenBSD, I learned something new and
useful!” — Peter Hessler, OpenBSD Journal

“I doubt that a better book on OpenBSD could be written” — Sandra
Henry-Stocker, ITWorld.com

“It quickly becomes clear that Michael actually uses OpenBSD and is
not a hired gun with a set word count to satisty... In short, this is not
a drive-by book and you will not find any hand waving.” - Michael
Dexter, callfortesting.org

DNSSEC Mastery

“When Michael descends on a topic and produces a book, you can
expect the result to contain loads of useful information, presented
along with humor and real-life anecdotes so you will want to explore
the topic in depth on your own systems.” — Peter Hansteen, author of
The Book of PF

“Pick up this book if you want an easy way to dive into DNSSEC” —
psybermonkey.net

SSH Mastery

“...one of those technical books that you wouldn’t keep on your
bookshelf. It’s one of the books that will have its bindings bent, and
many pages bookmarked sitting near the keyboard.” — Steven K Hicks,
SKH:TEC

“...SSH Mastery is a title that Unix users and system administrators

like myself will want to keep within reach...” — Peter Hansteen, author
of The Book of PF

“This stripping-down of the usual tech-book explanations gives it

the immediacy of extended documentation on the Internet. Not the
multipage how-to articles used as vehicles for advertising, but an in-
depth presentation from someone who used OpenSSH to do a number

of things, and paid attention while doing it” — DragonFlyBSD Digest

Network Flow Analysis

“Combining a great writing style with lots of technical info, this book
provides a learning experience that’s both fun and interesting. Not too
many technical books can claim that” — ;login: Magazine, October
2010

“This book is worth its weight in gold, especially if you have to deal
with a shoddy ISP who always blames things on your network.” —

Utahcon.com

“The book is a comparatively quick read and will come in handy when

troubleshooting and analyzing network problems.” —Dr. Dobbs

“Network Flow Analysis is a pick for any library strong in network

administration and data management.” — Midwest Book Review

FreeBSD Mastery: Storage Essentials

“If you're a FreeBSD (or Linux, or Unix) sysadmin, then you need this
book; it has a lot of hard-won knowledge, and will save your butt more
than you’ll be comfortable admitting. If you've read anything else by
Lucas, you also know we need him writing more books. Do the right

thing and buy this now.” — Slashdot

“If you are administering FreeBSD systems, especially ones that deal
with dedicated storage, you will find this useful.” — DragonFlyBSD
Digest

Absolute FreeBSD, 2nd Edition

“I am happy to say that Michael Lucas is probably the best
system administration author I've read.” — Richard Bejtlich, CSO,
MANDIANT, and TaoSecurity blogger

“Master practitioner Lucas organizes features and functions to make
sense in the development environment, and so provides aid and
comfort to new users, novices, and those with significant experience
alike” — SciTech Book News

“...reads well as the author has a very conversational tone, while giving
you more than enough information on the topic at hand. He drops
in jokes and honest truths, as if you were talking to him in a bar” —

Technology and Me Blog

Cisco Routers for the Desperate, 2nd Edition

“If only Cisco Routers for the Desperate had been on my bookshelf
a few years ago! It would have definitely saved me many hours of
searching for configuration help on my Cisco routers.” — Blogcritics

Magazine

“For me, reading this book was like having one of the guys in my
company who lives and breathes Cisco sitting down with me for a day
and explaining everything I need to know to handle problems or issues
likely to come my way. There may be many additional things I could
potentially learn about my Cisco switches, but likely few I'm likely to

encounter in my environment.” — IT World

“This really ought to be the book inside every Cisco Router box for the
very slim chance things go goofy and help is needed ‘right now’* —

MacCompanion

Absolute OpenBSD

“My current favorite is Absolute OpenBSD: Unix for the Practical
Paranoid by Michael W. Lucas from No Starch Press. Anyone should
be able to read this book, download OpenBSD, and get it running as
quickly as possible” — Infoworld

“I recommend Absolute OpenBSD to all programmers and
administrators working with the OpenBSD operating system (OS), or

considering it” — UnixReview

“Absolute OpenBSD by Michael Lucas is a broad and mostly gentle
introduction into the world of the OpenBSD operating system. It is
sufficiently complete and deep to give someone new to OpenBSD

a solid footing for doing real work and the mental tools for further
exploration... The potentially boring topic of systems administration
is made very readable and even fun by the light tone that Lucas uses.”

— Chris Palmer, President, San Francisco OpenBSD Users Group

PGP & GPG

<« b .
...unless you're a cryptographer, or never use email, you should read

this book” — Len Sassaman, CodeCon Founder

Tarsnap Mastery

“If you use any nix-type system, and need offsite backups, then you
need Tarsnap. If you want to use Tarsnap efficiently, you need Tarsnap

Mastery.” -Sunday Morning Linux Review episode 148

“This book is a great way to feel confident about backing up your data
securely in cloud or through off-site backups, without compromising
security or burning your pocket with enterprise grade products from
IT vendors” — Wendy Michele, nixCraft

About Michael W Lucas

“The next Stephen Bourne” - Peter Wemm, FreeBSD core team

member and longest surviving FreeBSD cluster engineer

“I hate you so much right now, Michael” - George V. Neville-Neil,
FreeBSD core team member and co-author of “The Design and
Implementation of the FreeBSD Operating System,” when Lucas gave

him a perfectly innocent puzzle pen

About Allan Jude

“Thanks for making ZFS knowable by everyone” - Matt Ahrens, co-
creator of ZFS

“I'm sure he’s thrilled beyond words to see the last of me.” - Michael W

Lucas, co-author

“Thank you for doing this... now I don't have to” - Jeff Bonwick, co-
creator of ZFS

FreeBSD Mastery

Advanced ZFS

Allan Jude
Michael W Lucas

FreeBSD Mastery: Advanced ZFS
Copyright 2016 by Allan Jude and Michael W Lucas
All rights reserved.

Authors: Allan Jude, Michael W Lucas
Copyediting: Lindy Lou Losh
Cover art: Eddie Sharam, after Schwind’s Saint Wolfgang and the Devil.

BSD Daemon copyright 1988 by Marshall Kirk McKusick. All rights reserved.

ISBN-13: 978-0692688687 (Tilted Windmill Press)
ISBN-10: 0692688684

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, record-
ing, telepathy, or by any information storage or retrieval system, without the prior
written permission of the copyright holder and the publisher. For information on
book distribution, translations, or other rights, please contact Tilted Windmill Press
(accounts@tiltedwindmillpress.com).

The information in this book is provided on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
author nor Tilted Windmill Press shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in it.

Tilted Windmill Press

https://www.tiltedwindmillpress.com

FreeBSD Mastery
Advanced ZFS

Allan Jude

Michael W Lucas

Brief Contents

Chapter 0: INtroduction.........c.cceuveveueureneceeininecrerireceseseeeesesecseneenes 1
Chapter 1: Boot ENVIronments........c.ceeeeceeerereneeerrineneeersenenceeenenesceennes 13
Chapter 2: Delegation and Jails.........ccceeveuveeinienicinicnicrecicnenen 27
Chapter 3: Sharing Datasets..........ccceeeuveerreeireerreerneenneerseenseeneenns 45
Chapter 4: Replicationcoeccueurereeerriniceiririeieeeneeieesecseeeeseeaenes 53
Chapter 5: ZFS VOIUMES........cccceurireeeeiriricicirirecicieireeieeseeseieeseeeenens 87
Chapter 6: Advanced Hardwareccoocoeuvvenecennenccnnenccnneceennns 95
Chapter 7: Caches.......coceueurieceeirinicieieecereeeieeseeeie e seeiesees 121
Chapter 8: Performance.........occvveveeeueereceeineneceeeneneeresseseeseesenesesens 143
Chapter 9: TUNING....c.cvviueireecece e seeaens 173
Chapter 10: ZFS POtPOUIT....ccucurureieeirieceeirieeieenireeieisieseseeneeeenns 187
AFEIWOId .. 211
SPOMNSOLS ...ttt et 213

ADOUL the AUIOTS .c.eeeeeeeeeeeeeeeeee et e e e eeeeseeseeas 215

Complete Contents

Chapter 0: INtroduction.........c.cceuveveueurineceeinineceeirineceeeseeeesesecseneenes 1
PrerequiSites.......civiiiiniiiiniiiiicc 1
ZFS Best Practices ..o 2

Space Management ... 2
Picking @ VDEV TYPE ...covcuiiriiciriniecieiriecicneccieseeeseseeaeiesnenes 4
The Importance of Labelscccoveveeurninccinnnccnreccrncceenes 4
Labeling DISKSccceurueeuiiriniciririccieinecicirineceeeeeseesetsesesesesseeaesesenes 6
GPT Label (Manual).......cooiveieieeeeeieeeeereeeeeeereeeeeese e 6
GPTID Label (AUtomatic) ...c.cveveeveeerieriierierceeeereeeeeeeeeeeeseeveeeenes 7
Disk Ident Label (AUtomatic)........coveeeveeeereereeeeiereceeeeeceeeereerenenes 7
Glabel (Manual)ooooveiiiiiieeceeee et 8
DTIACE ..o 8
BOOK OVEIVIEW ...ttt 10

Chapter 1: Boot ENVIronments........c.ceoeeecucurereneeceeinenceernenenceeenenencsenns 13
Installation Datasets.........cocurveurecuricrrierrieirieieeeeeseeee e 14
Using Boot Environments..........ccoocceviinicninncniicnnccnenn 16

Viewing Boot Environments...........ccccveeviiciinicnincnnicniniccnnnes 17
Creating Boot ENVIronmentsc.oeeeeeeevnnienecncncnnnneceinennns 18
Activating Boot Environments..........ccccccvveiiniiiniiinicnincnnnnes 19
Renaming Boot Environments...........ccccoeviniienniinncnnincnninnns 20
Removing Boot Environments...........cccoeviniiininicnnncnnncnns 20
Boot Environments and ZFS ..o, 21
Accessing Unused Boot Environments..........ccoeceuverencecrrerencuennes 22
Boot Environments at BOOt ... 23
Boot Environments and Applicationsc.cceveveucurerencecerinencecnnes 24
Moving Application Data.........ccccceererecueireneceeinenccrnereceeeeneeiennes 24
Creating New Datasets.........ccccccecevvniireencnininniicecinineeeeeenne 25
Disk Encryption and Boot Environments...........cocccevevcucurunennee 26

Chapter 2: Delegation and Jails........c.ceoveveucurrenccrenenccnnececerreceennns 27

ZFS Dele@ationccveeueurineceeuninecieinicieieinecieseeseeieseeseesesesseesenees 27
Adding Permissions.........occeeueereeueirirecueuneneceeeneecsseneeseseeseesenees 28
Revoking Permission..........ooeecuerecucurinecueinineceeininecseseneeeseeneenes 31

Delegation INheritance.........occovveeurerenccerinenccesnerccirneceeeseeeeens 31

Create Time PermiSSIONS ..occveeieeeeeeereeieeeeeeeseeeeeseeeessseesesseessssesens 33

Permission to change permissions..........c.cceeccueerenecreenenccrennencecnnns 34

Permission Sets.......coviiiiinininiiiiiiice 36
Delegation and Jailsccoveccueurnecreininccreininccenecceneceeneeaenes 38
Jailing @ Dataset........ccoccueurecueirenecieiriecereecieeee e eeeaenees 39
Building a ZFS Delegation Jailccccoeeeurneccinnccnnnccrrinecees 40
Defining Limits and Safety Belts.........cccccoevnercernncccnnnccrrinencnee 42
Chapter 3: Sharing Datasets........ccococceuererccrrirenecrnnereereneceeneereenenens 45
SMB ..ottt ettt 45
EISCSLi ettt 46
Target Configurationcccceeeceeuerrerecueuneneceeineecreereeeeneeseeaenns 46
Network File SYStemcccueeecrriricerniniceieineceeieeeceeeeeeeneseenene 48
NES Configuration TYPescccecuevrerecueurenecuemneeereeneeeeneeseesenns 48
Enabling NESV2/V3 ..o 49
Configuring NFSv2/v3 via ZES......cccoovveemrccnncenccreneeaes 49
Enabling NESVA......c.cocciiiiirccreceneecieeeecieeeeiese s 50
Configuring NFSv4 via ZFS.......cococoeinveinnccnnicenrccreineeens 51
Debugging ZEFS NES ..o 51
Chapter 4: Replicationcccceeururiririnirininineneeeeeeeeieieeeeeeeesesesens 53
But I Have RSYnNcl.....ccoiiiiiiniiiiiiiniccciiccccees 54
WHhy Replicate?ccciceunnieerrecieieirecieteesecseneeeeseseeeeseseeene 56
Basic Replicationc.ccceueueueieirininiriniireeeeeeeieeeieieeeteeeeeseseeas 58
Local Replicationcccoceeeeeueeueieueieininirisinereseeereeeeieie e 58
Viewing RePlCas.......coccuiriceeirinieieiriecieirieceseccreeseeeeseeseesenees 59
Remote Replication........cccueueueiriniririnininenecececeieeieieeeeeeeeeesesens 61
Replication Users and Datasets..........ccovvereverenenereneeeeneeeenennnns 62
Dataset Full Remote Replicationccceeevevevererencnecccieeienennne 63
Incremental Replication........ccoceeueueurininininininnincreeccceeeeieee 64
Incremental Replication AsSUmMpPtions.........ceeeeereveececeerererenennne 65
Differential Replicationcccoceueueueuniririninenininencneeeeceeeeienne 66
SSH Bandwidth Limitationsccccceveecerrnerceeinnecreinerecrrineenes 67
The Complexities of Incremental Replication.........c.ccoeccueurecunenes 67
Recursive Replicationcccevrreeerinineneneneceeieieeieieieeeeeesesesesens 70
Advanced Sending OPLionSccceuveeeeurerececrerneererrericeereeseeseneeene 71
Sending Properties.........ccevecuenenicininecuernineceeineeerenneeeeseeneeaes 71
Deduplicated Data Stream........cccceeeueerirerererinenenereneeeeeeeeenenee 72

Debugging and Testingcceoveveeururecuernnerceeineneereeneseereineenes 73

Large and Small BIOCKSccccccururiniciriniccinnecicinccieseccreineeees 73

Advanced Receiving OPtionscoccceueerercucreenecrernereceeneeneenenenene 73
Path and Mount Management..........c.ccoeceureneceeerenecrenneneecreenencnes 73
ROIl Back Changescccevuvecueineeucininecreininececineeesesseeeesenneenes 74
Debugging and Testingcceoveeuerrerecerrnerceeinnecreeneseereeneenes 75
Cloning on ReCeipPtocccueurenecueirinicirinccirneceeineereseeieseeneenes 75

BOOKMATIKS ..ottt seeaeaes 76

Resumable Send ... 78

Automating Replicationcoccceueureceeurinenccienecerrneceeeneeneneeene 80
USING ZXEET ...ttt teesese et se e 81
Zxfer Pull Mode ..ot 82
Rotating Snapshotsccccvvccuerinicinnirceinneccseceeeereneeees 83
Keeping Old Snapshotsccevevecirinecuernneceeinicereseecreineeees 83
Properties and Disaster ReCOVery.........cccoeurnecueurinecrernenccrrunencnes 84
More ZXfer OPLiONS......ccovveveeeeueieieieieieieieieietseseseseseeeseseenesesenenes 85

Chapter 5: ZFS VOIUMES.....c.c.ceruruririririririieeeeeeeeeieieeseieiseseseens 87

Creating, Destroying, and Manipulating ZFS Volumes................ 87

Sparse VOIUMES.........ocvuviiiiiieeieieieieieieieistsetetses e 88

VOIUME MOAE ...ttt eene 90
volmode at Command Linecocccccerereerennccrnnnenccreenecennenene 91
Default volmode........c.coccueurinecinininicieinceireccncceseeereeeees 91

ACCESSING ZVOIS ...ttt 91

Chapter 6: Advanced Hardwarecocoveveveneveeeeeeeeeeenneenes 95

SCSI ENClOSUIE SEIVICESvvurueeuiiceieieecietrieieresneeecseeseseseseeneaenes 95
Examining your Enclosurec.ccovecceurneceennccrninenccrnenencennns 96
Enclosure Path......c.coccocicinncececcecceeeecneeeeenes 98
Keeping the lights On.......ccceuriciennicceccccerccereeeaees 100

Controlling Host Bus Adaptersccceeeeururercecrrenencreneerecrennenenes 101
Adapter Details........covuviverininineeeeeeeieeeereeeeeee e 101
Display ENcloSures.........occcerenccueinenicieinincceenenecreseecseeneseeenns 102

SAS2ITCU it 103
Viewing Hardwarec.ococcceurnccrninnccrnninccnnneceeeseesenneseeenens 103
sas2ircu Locate Lightsccoococeininccininncccnccercccreenees 105

SAS Multipathi.....c.ceueiviriniiiiiicecceeeee e 105
Why Multipath? ..o 106

Multipath MOdes.......covuvivirininieeeeeieieieiieesrseseseeeeeeeieienes 106

Identifying Disks.......ccovveceirnicienincceircceneeceseecseeseeeenes 107

Configuring multipathc.cococecerniicnnnccrrccrcceecees 109
Multipath Device NOdescccoeeueeereueueirieirrirnerereeeeeeeienes 110
Manual Multipath Configurationc.ecceeveveerrnecrcrrenccnees 110
Viewing Multipath........cocoeccenneccnnccnnccecceeeceneeenes 111
Changing Multipath Mode........c.ccoeeceuerncennceinrccrenecenens 111
SSDIS e 112
NVME .ottt sae e snens 114
Viewing NVMe Devices.......ccoviniiniiiniiiniicinicciiciiicnns 115
NVMe Performancecocceoveecueerenccrneneneeenseneenersenescsesnesecsens 116
NVMe GEOM Providers and Booting.........c.ccocceuvvecuerreneunees 118
ZESA ottt 118
Chapter 7: Caches......coceieueueieiiieirirre e 121
Adaptive Replacement Cache.........ccocvuvvvninineneneceeccceeenne 121
Traditional Buffer Cache.......c..cocccvuvivccinnnccnnccrrcccrcee 121
ARC DESIZN ..ottt 122
ARC Memory USe.......ccovuiueiinininiiiiiiiiiiineeciineneeeesnnes 123
ZES-SEALS ..ttt 125
Modifying the ARC.......cccovieuririniernineccinnicieeeeiesseecsesseeaenens 128
Restricting ARC SiZeccouviviiiiicninininiiiicciininccccnes 128
Metadata and the ARC......ccccovieirinnccnnccnceeecereeeeaes 130
Datasets and the ARC ..o 131
Level 2 ARC ...ttt seeaenees 132
L2ARC Memory USe ..o 133
L2ARC Cachingccceuveecueirinicieirinicieinicceereeenesseecsesseeaenns 133
Streaming Files.......ccevevceirniciennecercceeceseeeeeeeenes 134
L2ARC Write Speed......cccoviuimiueueueieiiiriniririrsireseeseeeeeieeeienenes 135
ZES INtent LOG...ccoiviiiiiiiiiiiiiccciiccci s 136
Sync and Async Transactions..........cccevevcceeurenecrernenccreenencecnens 137
ZES Intent LOG.....coovvviiiiiiniiiiccciiiccicnee 139
Separate Intent Log.......ccovvviiiininininiiiciincccccie 139
Per-Dataset ZIL Tuningccccccecevivviviiiicncinniniiccccininnnnens 140
Synchronous Writes through the Stack........ccococcceuvvccuvinncnanes 141

ZPOOLCACRE ... 142

Chapter 8: Performance..........coceevurerrinenenineneneneeeeeeeeseeeeeesenenes 143

What Is Performance?cocovcevneceinniceeinenecenenecneenecesennene 143
ZFS and Performanceoccceveceueenenccrnenencecenenecneneenescnesseseaenns 145
ZPOOL HOSEAL 1.ttt 146
Current & Ongoing Pool ACtiVity.........cocececueurenecrernenccreirenccnnns 147
Virtual Device ACHVILY.....occceurnecrrinerccrriniccerecreeeeeseineeeenes 148
ZES PrefetCh.....ocuciecciiriccicrcceeccreecieeeeie e sseeienens 151
Per-VDEV Prefetch ... 151
Per-File Prefetch.......ovcicinccecccrccecceneeenes 153
Transaction Group Tuningcccevvviiivcnnniniicccnnniiccenes 153
tXE TIMING .o 154
EXE SIZE...oviiiiiiiiiccci e 155
txg Duration and Contents..........c.ceeeeeerereecurenecrernenecreenenecnens 156
Write TRIottlec.cueieceeiriicerccccrcc s 158
I/O Scheduling........c..ccviiiiininiiicicicccccne 159
Measuring Latency and Throughput........c.cccceveecerrnecvinnccnnes 160
T/ QUEUES. ..ottt ettt et eve e ar e ebeebeerveearebeen 162
Per-VDEV Requests ... 165
Scheduling Large VDEVScccicnnnccenicieseecreineeeenes 166
Asynchronous Writes and Transaction Group Sizes................... 167
Throttling WIteS.....c.coceueiriccuririceieecerereciceeee e sseeaenens 170
Scrub and Resilver Performance........ccocococuvvevccrrnenccnncccennenenee 171
Chapter 9: TUNING.....c.ccoueueirrieeirirceieecereeee e seeeenens 173
ZFS Stripe AllOCationc.cceeurirereririnininineeeeeeieeeieeieeeseeeeseeees 174
Mirrors and SErPeS........ovrerereeeeeieiereieieieieieieeresesese e 175
RAID -ZI ettt 175
RAID -Z2 .ttt 175
RAID-Z3 ettt 176
StrIPEd MITTOTS.ciieeeeeieieieieieieieie ettt 176
Changing the allocation Sizecccccevvevcuennecrenenccrenenccnnns 177
Recommendations.........coccereccueunenccreunencceennenecreseeeeseeseeeenens 177
Databases and ZEFS.........cccoovcrvennnccrneccnneeeeeeceesneeenes 177
All Databases........coveeueurireceeeninicieiecreeeeeeereeeesesesseeeenees 179
MySQL - InnoDB/XtraDB ..o, 180
MySQL — MYISAMocoviiiiiiiiiniriiiciiiincecciisseeeeinnes 181

PostgreSQL ... 182

Tuning for File SizZe ..o 183

Sl FIleS .. 183
Big Files ..ecuviieciciiiccirccectr s 184
The Worst of Both Worlds: Bittorrent.........ccccoeveecuevrnccucrrenccnnes 184
ShOTt SEIOKING....c.oviuieciiieieirirecictriectecee e sseaeaes 185
Chapter 10: ZFS POtPOUIT ...c.ceurururureriririririnineeeeeieieeieieieeieieesenens 187
SPLItting MiITOTS......ccueviiecuerrinencieirieeceeineeeeseeseseeeseeseseseseseaesesseseaes 187
Make Mirrors Deeper........ococveeeeueueueueueueieinirisseseseseeeseeenenenes 187
Splitting the POOL.......c.coeceiricciiccrcccrcccecceneeenes 188
SNAPSPEC..e it 189
Snapshot Range.........ccvvecueininicienincceirccceecesecceneeenes 190
SPECIfY DY AZE ...t 190
Snapshot Slaughter ..o 191
Recovering Destroyed Pools.........cccovevceurnececinnecernencceennenccnens 191
Recoverable POOIS ..o 192
Non-Recoverable Pools.........ccccocccueurecrninnccinniceeecereneenens 193
Rename Pool at RECOVETYccuuriiucrniniicieiriecicreccneneeeenens 194
Cloning Machines.........occeurevecueiriniceeiniccierecceneceeeseesesseenes 194
Case-Insensitive FileSystemcococccenerccrrinenccrninenceneenccnenneenes 195
ZFS Deep Dive: Zdb(8) c..cueveueururirireriririieeeeeeeieieeeieeeeeieeseens 196
BlOCK StatistiCs......oveueuerrueecueiriicieinieicieirecicreeecre e sesseeaenens 196
Detailed Block Statistics.......cocveoeueurenecrerrinccueininecieineccreineceenens 199
ZFS Configurationccccevecceeurenecrernenceceenneneesesseesesesseseeesens 200
Dataset Information.........coeccueurereeurinenccunenenceeinneeesereceesseeenens 202
Dataset BasiCs.......cooeviviiiiiiniiiiiiiicc 202
Dataset Detail ..o 202
Examining Specific Objects........covveerrnenccurnecrernnecrcneeecnens 203
Examining Specific Filesccocoocrrnccnnenccinnecenncccnececnens 205
Metaslabs and Free Space Histograms.........c.ccoceceuvenecueerencecnens 206
UDEIbDIOCK ...t eeeaes 209
AFEIWOTId ..ttt 211
SPONSOTS. ..ottt 213

ADOUL the AUIOTS . c.eeeeeeeeeeeeeeeee ettt e e saeeseesaeas 215

Acknowledgements

Our gratitude goes to the people who offered feedback on the
manuscript that became this book: Will Andrews, Marie Helene
Kvello-Aune, Josh Paetzel, Benedict Reuschling, Alan Somers,
Matthew Seaman, and Wim Wauters.

Lucas’ portions of this book were largely written on hardware from
iX Systems (http://www.ixsystems.com). Hed also like to thank his
wife Liz for shoving food under his office door as he wrote this book.

The authors would like to thank the FreeBSD Project and the
FreeBSD Foundation for providing access to NVMe devices in the
NetPerf cluster, and to Sentex Data Communications for hosting said
cluster. Lucas would like to thank Jude for somehow convincing these
folks to grant Jude cluster access, because there’s no way theyd give
it to Lucas. Also because it means that Lucas didn’t have to write that
part of the book.

Chapter 0: Introduction

The Z File System, or ZFS, is a complicated beast, but it is also the
most powerful tool in a sysadmin’s Batman-esque utility belt. This
book tries to demystify some of the magic that makes ZFS such a pow-
erhouse, and give you solid, actionable intel as you battle your storage
dragons.

ZFS contains over 100 “engineering years” of effort from some
of the best minds in the industry. While it has competitors, such as
B-Tree File System (BTREFS), those competitors have a lot of catching
up to do. And ZFS races further ahead every day.

This book takes you into some of the more complicated and eso-
teric parts of managing ZFS. If you want to know why a single gigabyte
of data fills your 2 GB drive, if you want to automatically update your
disaster recovery facility, or if you just want to use boot environments
on your laptop, FreeBSD Mastery: Advanced ZFS is for you.

Just about everything in this book applies in general to OpenZFS.
We use FreeBSD as the reference platform, but the mechanics of using

OpenZFS don’t change much among platforms.

Prerequisites

The title of the book includes the word “Advanced.” We expect you to
know a couple things before you can use this. The easy answer would
be that you should read and assimilate two earlier FreeBSD Mastery
titles: Storage Essentials and ZFS. But you might already know what’s
in those books, so here are some details on what you need to bring

with you.

Chapter 0: Introduction

You'll need familiarity with FreeBSD’s storage management layer,
GEOM. On non-FreeBSD platforms you can use disks and partition
devices for ZFS. Always use ZFS on disk or partition devices, not on
RAID or other software devices.

We assume you’re familiar with ZFS pools and datasets. You know
how to add VDEVs to a pool, and understand why you can’t add a lone
disk to your RAID-Z. You can take snapshots and create clones.

If you want to use FreeBSD’s encrypted ZFS support, you must un-
derstand FreeBSD’s GELI encryption. (You could use GBDE if you're
relying on the encryption to preserve human life, but the built-in GELI
support suffices for most of us. Also, GELI takes advantage of the
AES-NI hardware crypto acceleration in modern CPUs.)

ZFS Best Practices

While you can acquire all the needed ZFS knowledge from publicly
available documentation, that won’t give you the ZFS best practices
we've discussed in earlier books. As with so many other things in tech-
nology, the nice thing about best practices is that there are so many of
them to choose from.

We're discussing some of our best practices here. Perhaps these
practices are better than yours and you’ll gleefully adopt them. Maybe
they’ll spark some improvements in your existing best practices. Even
if your best practices blow ours away, these at least display our biases

so you know how we’re approaching the issues of storage management.

Space Management

With copy-on-write filesystems, deleting files uses space. Sysadmins
accustomed to traditional filesystems might hear this when they start
with ZFS, but don't really internalize it until the first time they run
out of disk and suffer a nasty shock. As the pool approaches capac-

ity, ZFS needs more and more time to store additional data blocks.

2

Chapter 0: Introduction

Performance degrades. While the ZFS developers keep reducing the
performance impact of fragmentation, it becomes more and more of
an issue as the pool approaches 100% utilization.

Recovering from a completely full pool is terribly hard. To prevent
all of the space from being used, or to at least provide a warning ahead
of time, create a reservation.

Ideally, you should create a reservation for 20% of the capacity of
your pool. You can always lower the reservation to buy time while you
work on adding more capacity or removing old data. The last thing
you want is to unexpectedly run out of space. This can give you the
soft landing that the Unix File System (UFS) offers, where only root
can use up the last few percent of available disk space.

On this 1 TB pool, we create a new dataset with 200 GB refreserva-

tion.

zfs create -o refreservation=200G mypool/reserved

Any time you’re exploring space issues on a ZFS dataset, remem-
ber the zfs get space command. You'll see all of the space-related

properties in a single convenient display.

zfs get space zstore/usr

NAME PROPERTY VALUE SOURCE
zstore/usr name zstore/usr -
zstore/usr available 5.00T -
zstore/usr used 367M -
zstore/usr usedbysnapshots 0 -
zstore/usr usedbydataset 140K -
zstore/usr usedbyrefreservation 0 -
zstore/usr usedbychildren 367M -

While zfs get space won't free up space for you, it’s the quickest

path to finding out where all your space went.

Chapter 0: Introduction

Picking a VDEV Type

As discussed at length in FreeBSD Mastery: ZFS, selecting the correct
VDEYV type when creating your pool is the most important decision
you make. It affects the performance of your pool, as well as the ex-
pansion possibilities.

A study by Paris, Amer, Long, and Schwarz (http://arxiv.org/ftp/
arxiv/papers/1501/1501.00513.pdf) found that to build a disk array
that could survive for four years with no human interaction, required
triple parity RAID. Double parity, even with an unlimited number of
spares, cannot maintain 99.999% (five nines) reliability over a four-
year period.

Combine this consideration with the hardware you have and your

expected future storage needs.

The Importance of Labels

By labeling drives, you save your future self a lot of headache. La-
bel your disks and partitions before adding them to a ZFS pool—or,
indeed, using them in any way, for reasons we'll discuss through this
section.

Take the case of an unfortunate friend of Jude’s, who created a
pool with raw device names. When a device failed, he rebooted before

replacing the disk. His pool looked a little different than he expected.

Chapter 0: Introduction

zpool status

pool: data

state: DEGRADED

status: One or more devices 1is currently being resilvered. The
pool will continue to function, possibly in a degraded
state.

action: Wait for the resilver to complete.

scan: resilver in progress since Sat Apr 11 17:49:38 2015

62.0M scanned out of 1.55T at 5.16M/s, 87h40m to go
9.81M resilvered, 0.00% done

config:
NAME STATE READ WRITE CKSUM
data DEGRADED 0 0 0
mirror-0 DEGRADED 0 0 0
spare-0 UNAVAIL 0 0 0
5694975301095445325 FAULTED 0 0 0 was /dev/dal
da7 ONLINE 0 0 856 (resilvering)
dal4 ONLINE 0 0 0
mirror-1 ONLINE 0 0 0
dal ONLINE 0 0 0
dal3 ONLINE 0 0 0

Originally, the pool had consisted of two mirrors: mirror-0 of dal
and dal5, and mirror-1 of da2 and dal4. Disk dal failed.

FreeBSD dynamically assigns disk device nodes at boot. With dal
missing, FreeBSD numbered the remaining disk devices to shift one
number lower. Disk dal5 became dal4, dal4 became dal3, and worst
of all, da2 became dal.

So then mirror-1 contained dal—which was not the same dal as
the faulted disk. Mirror-0 was using its spare (da7) in place of what
used to be called dal. Once Jude’s unfortunate friend put a disk back
in place for the failed dal, though, that da7 became da8.

ZFS doesn't use FreeBSD disk names to find the members of each
VDEYV, instead relying on its own on-disk label with a Globally Unique
Identifier (GUID). ZES can identify the disk no matter where the op-
erating system puts its device node. And the operating system doesn't
care either—it found the disk for you and mounted the filesystem;

what more do you want?

Chapter 0: Introduction

This can easily confuse the human operator, though. Suddenly dal
is not the failed device, but a perfectly good device in another VDEV
entirely! After the operator replaces the device and reboots the ma-
chine, the replaced drive will almost certainly become dal again. All
the device nodes will shift back to their original values. By the end of
all of this, the sysadmin has no idea which disk is which. The only idea

he’ll have in mind is the need for a stiff drink.
Labeling Disks

FreeBSD provides several ways to label a disk or partition. Some are
automatic, and some are managed by the user. Each has advantages
and disadvantages. One device can have multiple labels.

Once a label is accessed, other label pointing at the same device
wither and become inaccessible. This prevents accessing a single
device by multiple names.

All of the automatically generated labels are activated by default.
If you desire to use a manual label, it’s best to disable the manual
methods.

GPT Label (Manual)
If the disk is partitioned with a GUID Partition Table (GPT), each par-

tition can contain a text label of your choosing. This is both authors’
preferred method of labeling disks.

Use gpart(8) to create and label a new partition.
gpart add -t freebsd-zfs -1 zfs-mirror-1 da2

Here we change the label on the existing 2nd partition.
gpart modify -i 2 -1 fOl-serialnum da2

Manual labels let you identity disks by characteristics such as phys-
ical placement or serial number.

If you use GPT labels, we recommend disabling GPTID and disk
ID labels.

Chapter 0: Introduction
GPTID Label (Automatic)

With the GPT partitioning scheme, each partition has a unique GUID.
The GPT ID labeling system uses the GUID to identify partitions. The
problem is that GUIDs mean little to a human. By looking at a few

examples, you can see that it can be hard to spot the differences.

adaOpl: /dev/gptid/b305e4ff-b889-11e5-bace-002590db872e
adalpl: /dev/gptid/b329ff70-b889-11le5-bace-002590db872e
adalp2: /dev/gptid/b33db4ac-b889-11e5-bace-002590db872e

If only the last few characters of the first segment are actually dif-
ferent, it’s easy to confuse yourself.

If ZFS sees a piece of a pool under a GPTID labels before seeing
that same pool under a different label, it uses the GPTID label. This
hides your carefully hand-crafted labels. Disable GPTID labels at boot

by adding the following to /boot/10ader. cont.
kern.geom.labhel.gptid.enable=0

FreeBSD enables GPT ID labels by default.
Disk Ident Label (Automatic)

While GPT and GPTID labels identify a partition, the Disk Ident (or
diskid) labels identify an entire disk. The device name is based on the
disk’s serial number, which is convenient. Unfortunately, any special
characters in the serial number—notably, spaces—get encoded. This
creates very ugly device names. In addition, since the label identifies
the disk, not a partition, the partition part of the device name (p3) is

appended, and can be hard to pick out of the device name.

/dev/diskid/DISK-07013121E6B2FAl4
/dev/diskid/DISK-%20%20%20%20%20WD-WCC131365642
/dev/diskid/DISK-%20%20%20%20%20%20%20%20%20%20%20%20Z300HTCE

Chapter 0: Introduction

These autogenerated labels can be disabled to block ZFS from
using them instead of your GPT label. Adding the following to

/boot/loader.conf.

kern.geom.label.disk_ident.enable=0

Many people have strong arguments in favor of diskid labels. The
authors won't say those arguments are incorrect. We will say that
diskid labels give both of us a headache.

FreeBSD enables diskid labels by default.

Glabel (Manual)

In addition to all the other types of labels, you can also create a GEOM
label stored in the last sector of a disk or partition. These labels are in

a GEOM-specific format, called glabel. The advantage to these custom
glabels is that the do not require using the GPT format, so they can
work with both MBR formatted disks and raw disks with no partitions.
A glabel uses the provider’s last sector.

Create and view glabels with glabel(8).

glabel Tabel -v mylabel /dev/adaOp2
Metadata value stored on /dev/adaOp2.
Done.

glabel status
Name Status Components

gpt/gptboot0 N/A adaOpl
Tabel/mylabel N/A adaOp2
gpt/zfs0 N/A adaOp3

There is now a /dev/label/mylabel device.
All labels must be unique. While you can apply the same label to
multiple disks, only one shows up.

DTrace

Higher-level tuning of some ZFS features requires using DTrace, a

program for tracing software behavior and performance.

8

Chapter 0: Introduction

Knowledgeably using DTrace with ZFS requires an understanding
of the kernel internals. This is not a book on either DTrace or kernel
internals. Grabbing an existing script and running it requires neither.

We would encourage you to use the output of these DTrace scripts
both to solve your ZFS problems, and as entry points for choosing to
learn about kernel internals. You might not need to be a programmer,
but a professional sysadmin should develop understanding of how the
system works.

Blindly running scripts is exactly the sort of “occult IT” that Lucas
rants and rails against. That said, here’s exactly how you blindly run a
DTrace script.

DTrace uses kernel modules for the software probes that watch
how software behaves: dtrace. ko and dtraceall.ko. You can load
these automatically at boot in 10ader. conz. If the kernel modules
aren’t found, the dtrace(1) program automatically loads them the first
time you run it.

You must run dtrace as root.

Copy your script to a file. Then run dtrace -s, giving the script as
an argument.

Hit cTri-c to interrupt the script.

You can download all of the DTrace scripts given in this book from
Lucas’ GitHub repo, linked from zfsbook.com.

A FreeBSD sysadmin with an understanding of how the kernel
works can solve problems more quickly and correctly. For an overview
of ZFS’ internals, grab the latest edition of The Design and Implemen-
tation of the FreeBSD Operating System (Addison-Wesley Professional,
2014).' Similarly, DTrace is a powerful tool well worth learning and

understanding. We recommend Gregg’s and Mauro’s book DTrace:

1 Some of the authors of TDe&IotFOS use our ZFS books to
learn how to deploy the code they write, so it all evens out.

9

Chapter 0: Introduction

Dynamic Tracing in Oracle Solaris, Mac OS X, and FreeBSD (Prentice
Hall, 2011).

Book Overview

Chapter 0 is this introduction.

Chapter 1, “Boot Environments,” takes you through using ZFS
snapshots to create Solaris-style boot environments. Boot environ-
ments let you painlessly revert changes such as upgrades. You can even
have multiple versions of FreeBSD installed simultaneously. Once
you've used boot environments, youll wonder how you ever lived
without them.

Chapter 2, “Delegation and Jails,” covers ZFS’ internal permissions
scheme. ZFS can let the sysadmin give select users and groups privi-
leges to perform operations that normally require root access, such as
snapshots and cloning.

Chapter 3, “Sharing Datasets,” covers ZFS’ network file sharing fea-
tures. FreeBSD’s ZFS is integrated with the Network File System, and is
terribly useful for iSCSI devices.

Chapter 4, “Replication,” teaches you how to replicate ZFS datasets
to other machines. Replication can let you pick up a massive amount
of data and ship it across the country or around the planet, and keep it
up to date, without your users even noticing.

Chapter 5, “ZFS Volumes,” discusses some fine details of creating
and using block devices on top of a ZFS pool.

Chapter 6, “Advanced Hardware,” is for the people who have really
large storage arrays. If the words “SCSI multipathing” throw fear into
your heart, or if you have no idea what NVMe is, this chapter is for

you.

10

Chapter 0: Introduction

Chapter 7, “Caches,’ covers all of the various caching mechanisms.
You’'ll learn about the Advanced Replacement Cache and all its vari-
ants, reading and writing caches, and the on-disk pool cache.

Chapter 8, “Performance,” delves deep into how ZFS performs in
different environments and how to determineif system changes might
improve performance.

Chapter 9, “Tuning,” discusses how to adjust ZFS to work best in
your environment, hopefully without buying additional and more
expensive hardware.

Finally, Chapter 10, “ZFS Potpourri,” includes a bunch of short tips
on using ZFS.

To those of you who read the introductions to books: congratula-
tions. We hope you learned something, or were at least reminded of

some important details. Let’s go on to boot environments!

11

Chapter 1: Boot Environments

One of the most tediously terrifying system administration tasks is a
system upgrade. We all know that the new kernel might not boot the
system, but that’s the least of your problems. What if a critical program
requires an old version of a shared library? Maybe that new terminal
mode is subtly incompatible with your software. Or perhaps your mis-
sion-critical software chokes on the new linker.

Things go wrong. Sometimes problems aren’t apparent at first but
only snarl at you after a week or two, when falling back becomes even
more difficult. No matter what precautions you take or how much
testing you perform, any upgrade can go bad.

We've developed all sorts of tools to work around bad upgrades.
Boot loaders help you quickly recover from bad kernels. Backups help
you slowly recover from bad userlands. But none of these help you
understand exactly what went wrong and duplicate the problem.

Unless you're running ZFS, that is.

By combining snapshots and clones, you can create bootable
backups of your operating system’s kernel and userland. You want to
upgrade? Clone your operating system datasets and go ahead. If the
upgrade goes badly, boot the clone instead. This restores service while
you use zfs diff to determine which files changed and which of them

went wrong.

13

Chapter 1: Boot Environments

You can do all that by hand, but FreeBSD bundles this function-
ality into boot environments. With boot environment management
tools, you can easily create, destroy, and deploy boot environments.
Every time you're about to upgrade, create a new boot environment.
If the upgrade goes bad, either immediately or even weeks later, you
can revert to the old operating system version. The failed version stays
around, so you can deploy it to another machine and study exactly
what went wrong.

Using boot environments well requires that you understand how

you've installed FreeBSD, however.

Installation Datasets

On FreeBSD 10.1 and newer, ZFS-based install creates datasets de-
signed specifically for boot environments. These might seem counter-

intuitive at first glance. Take a look at a few of the datasets on a default

install.

zfs Tist

NAME USED AVAIL REFER MOUNTPOINT
zroot/var 703K 188G 128K /var

zroot/var/crash 128K 188G 128K /var/crash
zroot/var/log 192K 188G 192K /var/log
zroot/var/mail 128K 188G 128K /var/mail
zroot/var/tmp 128K 188G 128K /var/tmp

We have datasets for certain subdirectories of /var: /var/crash,
/var/log, /var/mail, and /var/tmp. But what about all of the other
directories under /var? The /var/db directory contains critical system
information, like the package database. Surely that’s at least as import-
ant as /var/tmp?

The default install doesn’t create datasets based on the importance
of the data in the directory. It creates datasets to separate data.

Now check zfs mount and see how these datasets are mounted.

14

Chapter 1: Boot Environments

zfs mount
zroot/RO0OT/default /

zroot/var/crash /var/crash
zroot/var/log /var/log
zroot/var/mail /var/mail
zroot/var/tmp /var/tmp

Notice the missing dataset: /var. That dataset exists, but isn’t
mounted (the canmount property is set to no). Files directly in /var
actually go in the dataset mounted as root, zroot/rooT/default. Files
under /var that have their own dataset, such as /var/10g/messages, go
in a separate dataset. Files that go under /var but don’t have their own
dataset, such as /var/db, go into the root dataset.

The location of data is critical to boot environments. Data likely to
be affected by a boot environment goes on the root dataset. Data that
you won't want to manage as part of the boot environment gets its own
dataset.

Consider /var/dp. This contains critical information like the
package database, the locate database, freebsd-update(8) records, and
so on. All of this is tightly tied to the operating system version. Up-
grading your host to a new operating system version requires using
freebsd-update, and probably means updating your add-on software
while you're at it. If you must revert an upgrade, you want these files
reverted as well.

Compare that to /var/1og. If | must revert an upgrade, I specifical-
ly don’t want my log files rolled back as well. Logs cover more than just
the operating system. Similarly, home directories and the mail spool in

/var/mail had better not get rolled back with the operating system.?

2 We're told that the World Trade Organization considers tam-
pering with a sysadmin’s email to be grounds for execution. We haven't
experimentally verified this, because it conforms to our prejudices.

15

Chapter 1: Boot Environments

FreeBSD upgrades affect specific directories. The core programs
lurk in /bin, /sbin, /usr/bin, and /usr/spin, with libraries in /1ip and
/usr/1ib. Thanks to the non-mounting /usr dataset, these directories
are now on your root dataset. Packages install under /usr/10ca1, but
it's also part of the root dataset. Similarly, thanks to the non-mounting
/var, the /var/ab directory with all that critical system information is
also part of the root dataset.

Files that are not part of the core system, such as logs, user home
directories, and so on, have their own datasets.

This segregates the core system and official packages from the rest
of the host, letting you manage them as a single entity. The FreeBSD
developers are working on packaging the base system as well as add-
on packages, which might necessitate revisiting the system discussed

here.

Using Boot Environments

ZFS snapshot and clone functions let you save, copy, and duplicate
filesystems. (We discussed snapshots and clones at length in FreeBSD
Mastery: ZFS).

With ZFS, it’s a good idea to snapshot datasets before performing
system maintenance such as an upgrade. If the upgrade or change
fails, you can roll back to the last known working version. To debug
that failed upgrade, copy the snapshot onto a test system and debug
it there, while your production system keeps chugging along on the
slightly older operating system version.

A “boot environment” packages up pre-maintenance snapshots
into a neat bundle, generally with a boot environment management
program. You don't need a boot environment manager to use snap-

shots in system administration, but managers make maintaining all

16

Chapter 1: Boot Environments

those snapshots much easier. FreeBSD has a boot environment manag-
er, beadm(8), deliberately designed to resemble Solaris’ beadm(8).
Install beadm with pkg(8).

pkg install -y beadm

You're now ready to use boot environments.

Viewing Boot Environments

Each boot environment is a dataset under zroot/roor. A system where
you've just installed peadm should have only one boot environment.

Use beadm list to view all boot environments.

beadm Tist
BE Active Mountpoint Space Created
default NR / 649.9M 2016-02-15 14:47

We have one environment, named default, after
zroot/ROOT/default. This is a freshly installed system, so that’s what
youd expect.

The Active column shows if this boot environment is in use. An
N means that the environment is now running. An R means that the
boot environment will be activated on reboot. The boot environment
used at reboot comes from the pool’s boot£s property.

The Mountpoint column shows the location of this boot environ-
ments mount point. All live boot environments are normally mounted
at /. If a boot environment is not in use, it normally isn’t mounted and
has the canmount property set to off or noauto. You could choose to
mount an otherwise unused boot environment elsewhere.

The Space column shows the amount of disk space this dataset
refers to.

The Created column shows the date this boot environment was
created. In this case, it’s the date the machine was installed.

Before changing the system, let’s create a boot environment.

17

Chapter 1: Boot Environments
Creating Boot Environments

Name each boot environment after the existing install or environment.
If you're creating a boot environment to prepare for upgrading pack-
ages, append the current date or some other identifying information.

Use freebsd-version to check the FreeBSD version you're running.

freebsd-version
10.3-RELEASE

Use beadn create to make a boot environment. Lucas is too lazy to

hit caps lock, so the boot environment name is in all lower case.

beadm create 10.3-release
Created successfully

We should now have two identical boot environments.

beadm 1ist

BE Active Mountpoint Space Created
default NR / 650.1M 2016-02-15 14:47
10.3-release - - 140.0K 2016-02-16 09:07

We're currently using the default boot environment, and this same
boot environment will start on our next boot. The 10.3-release envi-
ronment is available, however. At any time, you can tell FreeBSD to
boot the 10.3-release environment and get the system as it was exactly
when you created the environment.

The 10.3-release environment is very similar to the default envi-
ronment. Note that it uses only 140 KB of space. That’s enough to label
a snapshot, but as we haven't made any changes to the filesystem yet, it
takes up hardly any space.

Here I've run freebsd-update to update the environment to the
latest patch level. The default boot environment gets the patches. The
10.3-release environment remains unchanged.

As you might expect, applying patches changes the boot environ-

ment’s disk usage.

18

Chapter 1: Boot Environments

beadm 1ist

BE Active Mountpoint Space Created
default NR / 650.1IM 2016-02-15 14:47
10.3-release - - 69.7M 2016-02-16 09:07

The 10.3-release boot environment suddenly uses 69.7 MB of
space. That’s the space used by patches that have been applied between
the 10.3-release boot environment and the current boot environment,

10.3-release-p13.

Activating Boot Environments

Suppose you apply the latest patches and the machine goes bonkers.
Your server software fails, or the kernel panics, or tiny gremlins hop
out of the USB ports and start stealing your spoons. Fall back to an
earlier version by activating the boot environment and rebooting. Ac-

tivate a boot environment with beadm activate.

beadm activate 10.3-release
Activated successfully
beadm 1ist

BE Active Mountpoint Space Created
default N / 308.1M 2015-06-19 10:04
10.3-release R - 457.1IM 2015-06-19 14:13

The default boot environment has the Active flag set to N, meaning
it's now running. The 10.3-release environment has the Active flag set
to R, so after a reboot it will be live.

Reboot the system and suddenly you're back to running the
10.3-release boot environment, without any security updates and with
whatever packages you originally installed on the system. You've fallen
back to an older version of the operating system, with much less risk

than restoring from backup.

19

Chapter 1: Boot Environments
Renaming Boot Environments

Sometimes you want to change the name of a boot environment.
Maybe the name you picked wasn't as distinctive as you thought, or
one of your minions thought to create a boot environment but named
it FeliciaGoesViking. The beadm rename command lets you rename boot
environments. Give two arguments: the original name and the new
name.

This host has a boot environment called install. 'm changing that

to be 10.3-release, just like my other hosts.

beadm rename install 10.3-release
Renamed successfully

This name is now consistent with the rest of my hosts.

Removing Boot Environments

If you create a whole bunch of boot environments, you'll start using
more and more disk space. Some of these boot environments you'll

never use again.

beadm 1list

BE Active Mountpoint Space Created

default NR / 3.6G 2015-04-28 11:53
install - - 126.0M 2015-04-28 12:19
10.3-p9 - - 209.0M 2015-05-14 08:01
10.3-p10 - - 169.0M 2015-05-24 11:02

10.3-p10-10Jun 150.0M 2015-06-10 14:24
10.3-p10-13Jun 47.3M 2015-06-13 06:19
10.3-p12 - - 7.7M 2015-06-19 07:06

Using freebsd-version tells me this particular system is running
FreeBSD 10.3-RELEASE-p13. It’s conceivable that I might want to fall
back to 10.3-p12. But I'm not going back to p10, or p9, or especially
the install version. Eliminating these boot environments will save disk
space and make my existing boot environments easier to read and

understand.

20

Chapter 1: Boot Environments

Use beadm destroy and the boot environment name to remove

unwanted boot environments.

beadm destroy 10.3-release

Are you sure you want to destroy ‘10.3-release’?
This action cannot be undone (y/[n]): vy
Destroyed successfully

My raw install of FreeBSD 10.3 is now gone from this system. Ev-
erything that remains is patched in one way or another. This will prob-
ably free up some space on the root pool—not all the space used by the
boot environment, as snapshots and clones don’t free space until the

last snapshot that needs a block is destroyed. But you’ll get some back.

Boot Environments and ZFS

Boot environments leverage ZFS snapshots and clones. But what ex-
actly do they do? Look at the snapshots on the host we first installed.

zfs 1ist -t snapshot
NAME USED AVAIL REFER MOUNTPOINT

zroot/RO0T/default@2016-02-16-08:35:22 25.9M - 479M -

This host has one snapshot, named after the boot environment I
created. The default boot environment is what’s currently running, so

it doesn’t need a snapshot. Now look at the datasets under zroot/rooT.

zfs T1ist -r zroot/ROOT

NAME USED AVAIL REFER MOUNTPOINT
zroot/ROOT 765M 283G 96K none
zroot/RO0T/10.3-release 457M 283G 457M /

Each boot environment is a dataset under zroot/rooT, cloned
from the source snapshot. The boot environment default is
zroot/ROOT/default, while the 10.3-release boot environment is at

zroot/ROOT/10.3-release.

21

Chapter 1: Boot Environments

While all of the boot environment datasets have a mountpoint
property of /, every boot environment dataset except the active one
has canmount set to off. You can mount these datasets if you wish, but
you’ll want to specify a new mount point.

Destroying a boot environment destroys the associated snapshot

and clone.

Accessing Unused Boot Environments

One way to access the contents of unused boot environments is to
check the snapshots the boot environments were created from. The
boot environments are accessible in the hidden /. zrs directory. This is
convenient for quick checks.

If you want to mount those boot environments read-write, use the
beadm mount command and the boot environment name. The boot

environment will be read-write mounted in a location under /tmp.

beadm mount 10.3-pl9
Mounted successfully on ‘/tmp/BE-10.3-p19.DmtRWZGF’

When you finish with the environment, unmount it with

beadm umount.

beadm umount 10.3-pl9
Unmounted successfully.

It is possible to mount and unmount boot environment snapshots
with the canmount and mountpoint properties. If you do it incorrectly,
however, you'll mount the old boot environment over the top of your
running boot environment. While FreeBSD filesystems are stackable,
changing all the system binaries on a running system can put you in a
difficult situation. Imagine being unable to run reboot(8) because the
binary can’t talk to the running kernel!

Be safe. Use snapshot mounting and unmounting functions built
into beadm(8).

22

Chapter 1: Boot Environments
Boot Environments at Boot

So you've truly hosed your operating system. Forget getting to
multi-user mode—even single user mode has dissolved into a stream
of error messages so obscure that even FreeBSD’s most experienced
kernel hackers think your hardware has been hitting the radiator
booze. FreeBSD 10.3 and above lets you change your boot environ-
ment right at the loader prompt. This requires console access, but so
would any other method of getting yourself out of this hole.

Boot the host. You'll get a loader menu much like this, plus some

graphics.
} Welcome to FreeBSD }

Boot Multi User [Enter]
Boot [S]ingle User
[Esc]ape to Toader prompt
Reboot

AWN R

5. [K]ernel: kernel (1 of 2)
6. Configure Boot [O]ptions...
7. Select Boot [E]nvironment...

I
I
I
I
I
I
| Options:
I
I
I
I
I

Note item 7. Select it and you’ll get a new menu.
Welcome to FreeBSD :

1. Active:
2. bootfs: zfs:zroot/ROOT/default
3. [P]lage: 1 of 1

Boot Environments:
4. 10.3-release
5. default

Choose your preferred boot environment. The menu will update,
displaying your chosen environment in space 1 (labeled Active). Press
23

Chapter 1: Boot Environments

1 to go back to the main menu, or hit EnTER to boot. Your system will
revert to a known working boot environment, giving you a chance to

find out why everything went sideways.

Boot Environments and Applications

FreeBSD developed many traditional practices over the last decades,
especially with add-on packages. Some of these are based on FreeBSD
sensibilities: MySQL stashes data in /var/db/mysql. Some are based
on the software’s preferences: PostgreSQL keeps its records in
/usr/local/pgsql. All of these pose possible problems when using
boot environments.

Let’s consider MySQL as an example. The directory /var/db/mysq1
is part of the root dataset. It's included in boot environments. If you
store your database data in a boot environment, falling back to an old-
er boot environment will also revert your database data to an earlier
version. This probably isn't what you want.

Other server software has exactly the same problem.

Dealing with this isn’t hard, but it requires that you know your
software. You have two choices: changing the application data location,
or creating datasets in the old application directory. Both work fine

once you understand your needs.
Moving Application Data
Moving application data requires creating a dataset for application

data, and telling the application to use that location. Here, I decide to

put my MySQL data in /var/mysql.
zfs create zroot/var/mysql

I now have to tell MySQL to use this data directory. Checking the
variables in /usr/local/etc/rc.d/mysql-server tells me I want the

mysql dbdir option in /etc/rc.conf.

24

Chapter 1: Boot Environments
mysql_dbdir="/var/mysql”

I must move any existing data and configuration files from

/var/db/mysql to /var/mysql, then restart the server.

Creating New Datasets

A boot environment affects only the root filesystem dataset. If you
want to leave application data in the usual locations, you must create
a new dataset for that data. Let’s consider PostgreSQL as an example.
PostgreSQL stores its data in /usr/local/pgsql, so you could just

create that dataset.

zfs create zroot/usr/local/pgsql
cannot create ‘zroot/usr/local/pgsql’: parent does not
exist

Without a /usr/local dataset, you cannot create
zroot/usr/local/pgsql. But if you create a standard /usr/1ocal
dataset, you'll either pull the files in /usr/10ca1 out of the boot en-
vironment, or overlay an empty filesystem on top of the populated
/usr/local directory. As with /usr, the solution is to create a filesys-
tem with the canmount property set to off, and then create the child

dataset.

zfs create -o canmount=off zroot/usr/local
zfs create zroot/usr/local/pgsql

You now have /usr/local/pgsql as its own dataset, and can safely
run PostgreSQL with boot environments.

Neither solution addresses messy software packages like Apache.
Apache 2.4, for example, sticks lots of stuff in /usr/10ca1/wwwand
/usr/local/etc/apache24. The sysadmin is supposed to edit some, but
not all, of those files. This complicates separation by ZFS datasets. For
Apache and programs like it, I normally create an entirely new dataset,

such as /var/www, and put the active web site files there.

25

Chapter 1: Boot Environments

Disk Encryption and Boot Environments

The standard beadm boot environment manager only works with a sin-
gle root filesystem dataset. A FreeBSD installation to a GELI-encrypt-
ed disk is incompatible with peadm.

Installing default FreeBSD with ZFS onto an encrypted disk device
requires a small, unencrypted partition to store the boot kernel. The
default installer creates the pool bootpoo1 for this, and puts the /boot
in bootpool/boot. On a running system, /boot is a symlink to this
other pool. The rest of the system goes in the zroot pool.

You can use boot environments on encrypted disks. You just don’t
get the convenience of a boot environment manager. Take a snapshot
before you upgrade your system. Clone that snapshot to create the old
environment. Keep a copy of your kernel for each boot environment.
Change which environment FreeBSD uses as the root filesystem with
the zroot pool’s bootfs property.

Booting the kernel requires a whole different process, however. Be-
fore patching your kernel you must create a copy of that kernel named
after your boot environment. Before upgrading from, say, 10.3-RE-
LEASE to 10.3-p5, you'll want to copy the 10.3-RELEASE kernel from
/boot/kernel 10 /boot/kernel.10.3R. If you have to revert the boot
environment, choose the old kernel at the loader menu.

PC-BSD 10 does support using boot environments on GELI-en-
crypted disks, but they use the GRUB boot loader and some special
trickery.

FreeBSD 11.0 is expected to support booting from GELI encrypted
ZFS without the separate bootpoo1, allowing boot environments to
work the same as they do on unencrypted disks. That feature has not
landed as of this book’s publication date.

For most FreeBSD ZFS users, boot environments save a lot of trou-

ble. Let’s go on and talk about other ways to save you trouble.

26

Chapter 2: Delegation and Jails

The ZFS designers did their best to ease storage management for
system administrators. One of the best ways to reduce the amount of
work you do is to make someone else do the work for you. ZFS has a
tully featured delegation system that lets you dictate what commands
and features a user or group of users can use on each dataset. You can
allow users to create and destroy their own snapshots, create child
datasets, generate space consumption reports, or control the proper-
ties of a dataset. ZFS builds on the delegation feature to provide special

support to jails.
ZFS Delegation

ZFS lets you delegate administrative tasks to users on a per-property
and per-command basis for each dataset. You could give the database
administrator complete control over the database pool, or the web
server admin control over snapshots on the web site dataset. Use the
zfs allow command to delegate permissions.

Giving zfs allow a pool or dataset as an argument shows the
permissions on that device. Here I get the permissions on the pool

remotepool.

zfs allow remotepool
---- Permissions on remotepool -----------—-—-———————————
Local+Descendent permissions:

user replicator compression,create,destroy,mount,
mountpoint,receive

This pool has a single permission entry, for the user replicator.
This user has rights to the compression and mountpoint properties, as
well as the create, destroy, mount, and receive subcommands of zfs.
(Chapter 4 discusses the importance of these particular permissions.)

27

Chapter 2: Delegation and Jails

Applications and users can define their own properties. Programs
like z£stools create properties to manage snapshots. There is also a
special permission, userprop, to allow users to create user-defined
properties. User-defined properties are assigned as a single permis-
sion: you cannot separately assign different user-defined properties.

While root is not listed as having any permissions here, root can

do whatever it dang well pleases. Because that’s how Unix rolls.

Adding Permissions

Delegate permissions on a pool or a dataset to a user or group. The -u

flag lets you specify a username to zfs allow, and -g specifies a group.

zfs allow -u username permissions pool/dataset

Suppose we have a troublesome user—call him Lucas’. He keeps
trying stupid Unix tricks that fry his home directory. Let’s allow Lucas
to create his own snapshots so he doesn’t have to bother the sysadmin

every time he breaks his environment.

zfs allow -u Tucas snapshot,rollback \
mypool/usr/home/lucas

When you view the dataset permissions, the two permissions

you've assigned show up.

zfs allow mypool/usr/home/Tucas
---- Permissions on mypool/usr/home/lucas -------------
Local+Descendent permissions:

user Tlucas rollback,snapshot

Delegations are automatically inherited. When Lucas gained the
ability to snapshot his home directory dataset, he also gained that
permission on all of the child datasets of his home directory. For some

reason he has a dataset called b1ackmaii. It's probably where he stashes

3 I'm certain that when Jude wrote this section, he was thinking
of some Lucas other than me. ==mwl

28

Chapter 2: Delegation and Jails

all of the photos and recordings he uses to get BSD developers to help

him with research and technical reviews.*

zfs allow mypool/usr/home/Tucas/blackmail
---- Permissions on mypool/usr/home/lucas --------------
Local+Descendent permissions:

user Tlucas rollback,snapshot

Lucas should have the access to create a snapshot. Before telling

him it works, though, impersonate Lucas and create a snapshot.

su lucas

$ zfs snapshot \
mypool/usr/home/Tucas/blackmail@bsdcan_drunken_escapades
$ zfs T1ist -t all -r -o name mypool/usr/home/lucas

NAME

mypool/usr/home/Tucas

mypool/usr/home/Tucas/bTackmail
mypool/usr/home/Tucas/bTackmail@bsdcan_drunken_escapades

We know this works. Let’s get rid of the snapshot before Lucas gets

any ideas he doesn’t already have.

§ zfs destroy \
mypool/usr/home/Tucas/blackmail@bsdcan_drunken_escapades
cannot destroy snapshots: permission denied

Creating new datasets involves mounting them, and destroying a
dataset obviously should include unmounting that. To be useful the
clone, create, and destroy commands all require the mount permis-
sion. To grant lucas permissions, run zfs allow -u lucas and list

the desired permissions and dataset.

zfs allow -u Tucas destroy,mount mypool/usr/home/lucas

Checking your work now shows every privilege you've assigned in

both runs of zfs allow.

4 Not all of that material. And definitely some other Lucas.
==mw]

29

Chapter 2: Delegation and Jails

zfs allow mypool/usr/home/Tucas
---- Permissions on mypool/usr/home/lucas ---------—-——--—-
Local+Descendent permissions:

user lucas destroy,mount,rollback,snapshot

Lucas can now shoot himself in the foot by destroying the dataset
his home directory resides on. And he’ll certainly call to whinge about
it.

You can give a user permission to create and mount a dataset, but
the operating system also has its say here. FreeBSD uses the sysctl
vfs.usermount to determine if users can mount partitions. Set this
sysctl to I to allow a user to mount partitions.

Even with that sysctl, allowing a regular user to mount filesystems
comes with a safety belt that blocks users from doing evil things. A
user must own the directory where he wants to mount anything. This
prevents users from mounting their new dataset as /etc and hijacking
your system. The dataset might have restrictive permissions on it, but a
user who owns the mount point and has the mount privilege can mount
it.

To allow the regular user 1ucas to create, clone, and mount data-
sets under his home directory, set the sysctl and make sure he owns

the directory you're letting him control.

sysctl vfs.usermount=1
zfs allow -u lucas create,clone,mount \
mypool/usr/home/lucas

Log in as lucas again to verify it works.

su lucas
$ zfs create mypool/usr/home/lucas/evil_plot
$ zfs mount

mypool/RO0T/default /
Hypoo1/usr/home /usr/home
mypool/usr/home/Tucas /usr/home/lucas

mypool/usr/home/lucas/blackmail /usr/home/lucas/bTackmail
mypool/usr/home/lucas/evil_plot /usr/home/lucas/evil_plot

30

Chapter 2: Delegation and Jails

Remember to add vfs.usermount=1 to your /etc/sysctl.conf SO

he can still mount datasets after a reboot, or he’ll come whining to you.

Revoking Permission

Giving permissions (and work) away to other people can be free-
ing, but nothing matches the feeling of taking permission away. Use
zfs unallow to remove permissions from a dataset. The command
follows the exact same syntax as zfs allow.

Here, user 1ucas has created too many children and we decide he
should not longer be allowed to procreate. Get rid of his create per-

mission.

zfs unallow -u lucas create mypool/usr/home/lucas
zfs allow mypool/usr/home/Tucas
---- Permissions on mypool/usr/home/lucas ---------—-—-—--—-
Local+Descendent permissions:
user lucas clone,destroy,mount,rollback,snapshot

Permissions can also be removed recursively, with the -r flag,
which makes sure the permission is removed even from distant child

datasets where you might have manually set a privilege.

Delegation Inheritance

ZFS’ delegated permissions are automatically inherited. If you give

a user privileges over zroot/db, she automatically gets those same
privileges over all children of zroot/dab. The z£s allow subcommand
can also restrict permission inheritance. Inherited permissions can be
local, or apply to descendents.

Local permissions apply only to the specified dataset. We might
allow lucas permissions to snapshot zroot /usr/home/1ucas, but not
snapshot the child datasets. He'll have to manage his blackmail mate-
rial the old-fashioned way. Set privileges to be local only with the -1
flag.

31

Chapter 2: Delegation and Jails

zfs allow -1u Tucas clone,destroy,mount,rollback,
snapshot zroot/home/lucas

The permissions now show up as local only, rather than local and

descendent.

zfs allow zroot/home/lucas
---- Permissions on zroot/home/lucas -------------------
Local permissions:

user lucas clone,destroy,mount,rollback,snapshot

You can also apply permissions only to child datasets, and not the
dataset in the command. The -4 flag tells z£s a11ow that the permis-
sion applies only to the descendent datasets, not the parent on which
the permissions were created. This can be used to allow users to de-
stroy child datasets, but not the parent.

Here I want to allow lucas to destroy the snapshots he created,
but not destroy his entire home directory. I use -d to specify that these
permissions apply only to his home directory’s child datasets, and not
the home directory itself. I leave permissions for the snapshot and
rollpback commands in place on his home directory, so he can rescue

himself if he doesn’t screw up too badly.

zfs allow -d Tucas destroy,mount mypool/usr/home/lucas
zfs allow mypool/usr/home/lucas
---- Permissions on mypool/usr/home/lucas ---------—----
Descendent permissions:

user Tucas destroy,mount
Local+Descendent permissions:

user Tucas rollback,snapshot

Once again, impersonate Lucas and test the permissions.

$ zfs destroy -v mypool/usr/home/Tucas/desc

will destroy mypool/usr/home/lucas/desc

$ zfs destroy -v mypool/usr/home/lucas

cannot unmount ‘/home/lucas’: Operation not permitted

Running z£s destroy on Lucas” home directory is now a pleasure

reserved for the sysadmin.

32

Chapter 2: Delegation and Jails
Create Time Permissions

ZFS allows you to create permissions today, for datasets that won't
exist until next Tuesday, or some other future time. Create time per-
missions apply to the user who creates a dataset. They're like a “sticky
bit” for delegation. Define create time permissions with -c.

A common desire for these kinds of permissions is to give the per-
missions to everyone, rather than specifying every user on the system
or defining a group that includes all users. Rather than -u or -g and a
user or group name, use the - flag to indicate everyone (all users).

Using create time permissions requires careful control of inheri-
tance. You want the create time permissions to apply to child datasets,
not the parent. The parent dataset should have its own privileges, set
with -1.

Suppose we have a scratch dataset, usable by everyone. It’s like a
/tmp, but with ZFS features. We want everyone to be able to create and
mount datasets in this space, but not have access to trash the dataset as
a whole. Those permissions must be restricted (via the -1 flag) to that

dataset, and not automatically inherited by the new children.

zfs allow -1 -e create,mount mypool/scratch
Now use -c to specify create time permissions assigned to newly

created datasets.

zfs allow -c snapshot,rollback,destroy mypool/scratch

Checking your work will show the create time permissions as per-

mission sets.

zfs allow mypool/scratch
---- Permissions on mypool/scratch ----—————————————————
Permission sets:
destroy, rollback, snapshot
Local permissions:
everyone create,mount

33

Chapter 2: Delegation and Jails

The real test is running these commands as a normal user, of

course. Let’s get Llucas to create some datasets under mypool/scratch.

su lucas
$ zfs create mypool/scratch/lucas

That worked. But what privileges does he have?

$ zfs allow mypool/scratch/lucas
---- Permissions on mypool/scratch/Tucas -------——--————-—-
Local permissions:

user Tlucas destroy,rollback,snapshot
---- Permissions on mypool/scratch ----—-————————————————
Permission sets:

destroy, rollback, snapshot
Local permissions:

everyone create,mount

Now lucas, and only lucas, can create snapshots of and destroy

his dataset. Other users can create their own datasets that only they

have access to.

Permission to change permissions

A user with access to the a110w command can delegate any other per-
missions that he already has. This lets you give a team leader or project
manager the ability to take charge of permissions for his crew.
Consider the previous example of a scratch dataset. Suppose
lucas wants to allow the 1iz user to create snapshots on his new
scratch dataset.
First, give lucas the ability to delegate permissions by allowing

him the zfs allow command.

34

Chapter 2: Delegation and Jails

zfs allow -u Tucas allow mypool/scratch/lucas

zfs allow mypool/scratch/lucas
---- Permissions on mypool/scratch/Tucas ---------—-—--—-
Local permissions:
user lucas destroy,snapshot
Local+Descendent permissions:
user Tucas allow
---- Permissions on mypool/scratch -----——--————-—————————
Permission sets:
destroy, snapshot
Local permissions:
everyone create,mount

Lucas can now delegate any permission he has to the 1iz account.

Test this by logging in as him.

su lucas
$ zfs allow -u 1iz snapshot mypool/scratch/lucas

$ zfs allow mypool/scratch/lucas
---- Permissions on mypool/scratch/Tucas ---------—---—-
Local permissions:
user lucas destroy,snapshot
Local+Descendent permissions:
user Tucas allow
user 1liz snapshot
---- Permissions on mypool/scratch ----—-——--—————————————
Permission sets:
destroy, snapshot
Local permissions:
everyone create,mount

But Lucas can't give away permissions he does not have:

$ zfs allow -u 1iz clone mypool/scratch/lucas
cannot set permissions on ‘mypool/scratch/Tucas’:
permission denied

The sysadmin can delegate permissions to a user, and make the

user responsible for further delegation of his own dataset.

35

Chapter 2: Delegation and Jails
Permission Sets

Running zfs allow presents a list of over 60 permissions you can
grant a user. We won't list them all here, but you can grant access
to each zfs(8) subcommand and each pool and dataset property
individually.

Rather than having to grant a long list of permissions to each user,
and inevitably forgetting one, ZFS allows you to define sets of permis-
sions. Use the -s flag and give a permission set name, beginning with
the e sign. Then list the permissions in that set, and the name of the

dataset that permission set is valid for.

zfs allow -s @permissionset \
permission,permission,permission.. dataset

Here we create a permission set called @dataset that includes the
permissions needed to manage datasets. It applies to the mypoo1/teams

dataset.

zfs allow -s @dataset create,destroy,mount,rename,
snapshot,rollback,clone,promote,hold,release \
mypool/teams

Here’s a permission set called @replication that offers the privileges

needed for replication on that same dataset.
zfs allow -s @replication send,receive mypool/teams

The @billing permission set grants access to the normally inacces-

sible userused and groupused properties on this dataset.

zfs allow -s @billing userused,groupused mypool/teams
Here’s a @quotas permission set that lets someone manage dataset

Space quotas.

zfs allow -s @quotas userquota,groupquota,quota,
refquota,reservation, refreservation mypool/teams

36

Chapter 2: Delegation and Jails

Finally, here’s a permissions set to let people adjust some basic
dataset properties. Presumably the sysadmin sets these to reasonable
defaults, but users might have specific datasets with special require-

ments.

zfs allow -s @basic_properties compression,copies,
atime,primarycache, secondarycache mypool/teams

Once you establish permission sets, you can assign them to users
and groups. Here, the managers group gets access to privileges in the

@dataset and @basic_properties sets in their dataset.

zfs allow -g managers @dataset,@basic_properties \
mypool/teams

And here, we allow the billbot user that runs the billing system

access to the billing permissions set on mypoo1/teams.

zfs allow -u billbot @billing mypool/teams
Running zfs allow shows you the permission sets and the as-

signed permissions on a dataset.

zfs allow mypool/teams
---- Permissions on mypool/teams ---------——————————————
Permission sets:

@basic_properties atime,compression,copies,
primarycache, secondarycache

@biT1ing groupused,userused

@dataset clone,create,destroy,hold,mount,promote,
release, rename,rollback,snapshot

@Qquotas groupquota,quota,refquota,refreservation,
reservation,userquota

@replication receive,send
Local+Descendent permissions:

user billbot @bilTling

group managers @basic_properties,@dataset

ZFS delegation can quickly become complex. As with many other
permissions schemes, using groups can help simplify management.
Assign permissions only when they’re needed, not because you think

you know how the system will evolve.

37

Chapter 2: Delegation and Jails
Delegation and Jails

FreeBSD supports a lightweight virtualization method called jails.
You'll find many tutorials on using jails, so we won’t get into the com-
plexities of jails.” FreeBSD’s ZFS implementation has special support
for jails.

A dataset can be marked for use only in a jail. The jail's root user
has full control of the dataset. She can create child datasets and change
any properties she wishes.

A jailed dataset cannot be mounted on the host system. The jail
dataset is untrusted, and might have property settings that are incom-
patible with—or actively hostile to—the host. As an easy example, the
jail might have a dataset with a mountpoint of /etc. Remember, BSD
filesystems are stackable. If the host mounts that jail dataset, the jail’s
/etc would stack over the host’s /etc. The host would suddenly have
the jail's /etc/password, rc.conf, sshd config, and other vital system
files. Worst case, the jail’s sysadmin could claim control of the host.
Best case, the host’s sysadmin would have a really unhappy day.

As far as the jail's root user can tell, he almost completely controls
the dataset. The only property he cannot change is the quota. Editing
the quota might give him more access than the sysadmin allocated to
him.

The jailed root account can see that it exists within a jail, how-
ever. The root account can see each of their dataset’s parent datasets
up to the root of the pool. If you have a jai1s pool and a jail exists in,
say, jails/customers/lucas, the root user can see that path. They
can’t see any other datasets outside the jail, however. Other customer

datasets are invisible.

5 Lucas keeps insisting that he’s going to write a “jails mastery”
book. Sadly, the storage books are somewhere between prequels and
prerequisites.

38

Chapter 2: Delegation and Jails
Jailing a Dataset

To jail a dataset, set the jailed property to on. The host will no longer
be able to mount the dataset.
To build a jail for Lucas, create a new dataset to serve as the root of

his prison. Here we use the zroot/jails/lucas/jail dataset for the jail.

zfs create -o jailed=on -o mountpoint=/jail \
zroot/jails/lucas/jail

Once you have the dataset, start a temporary jail rooted in that

dataset.

jail -c path=/zroot/jails/lucas mount.devfs \
allow.mount allow.mount.zfs host.hostname=lucas \
ip4.addr="100]127.0.0.2” exec.poststart = \
“/sbin/zfs jail lucas zroot/jails/lucas/jail” \
command=/bin/sh

Now enter the jail.

jexec lucas sh

As we're in the jail, we can create a new dataset.

jail# zfs create zroot/jails/lucas/jail/foo

The new dataset, and the jail’s parent datasets, are visible.

jail# zfs 1ist -o name,mountpoint

NAME MOUNTPOINT

zroot /zroot

zroot/jails /zroot/jails
zroot/jails/Tucas /zroot/jails/lucas
zroot/jails/lucas/jail /jail

zroot/jails/lucas/jail/foo /jail/foo

Are there other datasets in zroot/jails or, indeed, in the host
underlying this jail? Users in the jail will never know.

The user lucas can now set mount points, create and destroy
datasets, delegate datasets to regular users inside the jail, and so on. If
only it were that easy to keep Lucas users from breaking things in the

real world...

39

Chapter 2: Delegation and Jails
Building a ZFS Delegation Jail

Your jail users probably don’t want a bare-bones jail as demonstrated
above. They probably want an actual userland, with programs and the
ability to run services. That means installing FreeBSD on your jailed
dataset. Jails can be incredibly complex, so we won’t completely cover
them here. We'll do a basic FreeBSD install on a jailed dataset, so you
can add ZFS to your existing jail processes.

First, create the jail dataset.

zfs create -p mypool/jails/lucas/zroot

Now install the operating system on that dataset. You can install
directly from the FTP site, as we do here with the amd64 version of
FreeBSD 10.3.

fetch -o - ftp://ftp.freebsd.org/pub/FreeBSD/
releases/amd64/10.3-RELEASE/base.txz | \
tar -xJf - -C /mypool/jails/lucas/
If you intend to install multiple jails, download the rase. txz for

your version and extract it in each jail.

tar -xf base.txz -C /mypool/jails/lucas/

Once you've copied the operating system into the jail dataset, mark
that dataset as untrusted. That makes the dataset inaccessible to the
host.

zfs set mountpoint=/zroot mypool/jails/lucas/zroot
zfs set jailed=on mypool/jails/lucas/zroot

With a ready dataset, make an entry for this jail in
the jail config file /etc/jail.conf. Here we define the jail

no.gelato.for.michaelwlucas.com.’

6 Okay. Now Jude is just being mean. ==mwl
40

Chapter 2: Delegation and Jails

nogelatoforyou {

host.hostname = “no.gelato.for.michaelwlucas.com”;
ip4.addr = “em0[198.51.100.200";

path = “/mypool/jails/lucas”;

persist = true;

mount.devfs = true;

allow.mount = true;

alTow.mount.zfs = true;

enforce_statfs = 1;

exec.poststart = “/sbin/zfs jail nogelatoforyou mypool/
jails/lucas/zroot”;

exec.poststop = “/sbin/zfs unjail nogelatoforyou my-
pool/jails/Tucas/zroot”;

b

With the jaii.conf entry in place, we can start the jail using the
standard FreeBSD tools.

service jail onestart nogelatoforyou

The last chunk of setup needs to happen within the jail. Alterna-
tively, you could do something wild and crazy like plan ahead when
installing the operating system, but that would take the fun out of

things. Let’s enter the jail and look at our datasets.

jexec nogelatoforyou /bin/sh
jail# zfs Tist

NAME USED AVAIL REFER MOUNTPOINT

mypoo’l 5.21G 13.1G 96K none

mypool/jails 180M 13.1G 96K /mypool/jails
mypool/jails/Tucas 180M 13.1G 180M /mypool/jails/lucas

mypool/jails/Tucas/zroot 96K 13.1G 96K /zroots
This new jail doesn’t have ZFS enabled in rc. conf, so the new data-

set is not mounted by default. Enable ZFS and restart the jail.

jail# sysrc zfs_enable="YES”

Having made a configuration change, restart and reenter the jail.
service jail onerestart nogelatoforyou
jexec nogelatoforyou /bin/sh

You'll see the newly created datasets.

41

Chapter 2: Delegation and Jails

jail# zfs create mypool/jails/lucas/zroot/test

jail# zfs Tist

NAME USED AVAIL REFER MOUNTPOINT

mypoo’l 5.21G 13.1G 96K none

mypool/jails 180M 13.1G 96K /mypool/jails
mypool/jails/Tucas 180M 13.1G 180M /mypool/jails/Tucas
mypool/jails/Tucas/zroot 192K 13.1G 96K /zroot

mypool/jails/lucas/zroot/test 96K 13.1G 96K /zroot/test

The jail administrator must use the full path, including parts that

are outside of the jail, to create new datasets.
Defining Limits and Safety Belts

But what if Lucas is incompetent, or evil? You gave him access to take
his own snapshots, and he tries to create a million snapshots “just to
see what would happen.” You know people like that.

ZFS has your back when dealing with these difficult users. ZFS
provides the snapshot_limit and filesystem limit properties, which
allow you to restrict the number of snapshots or child filesystems that
can be created under a specific dataset. Set these properties to one
greater than the number of snapshots or datasets you want the user to
create. That is, if you set snapshot_limit to 10, the user can create nine
snapshots. The tenth generates an error.

To contain the pure evil that is Lucas, limit the number of snap-
shots he can create to two.

zfs set snapshot_limit=3 zroot/usr/home/lucas
su lucas

$ zfs snapshot zroot/usr/home/lucas@three

$ zfs snapshot zroot/usr/home/lucas@four
cannot create snapshot ‘zroot/usr/home/lucas’: out of
space

42

Chapter 2: Delegation and Jails

The read-only filesystem_count and snapshot_count properties
allow you to quickly see how many filesystems or snapshots exist, and
compare that number to the limit.

Delegation and jails are powerful tools for administrative manage-

ment of storage space. Now let’s discuss sharing with ZFS.

43

Chapter 3: Sharing Datasets

OpenZFS integrates sharing of datasets over Server Message Block
(SMB), Network File System (NFS), and Internet Small Computer
System Interface (iSCSI). FreeBSD bundles support for only NFS and
iSCSI, however. This chapter takes you through FreeBSD’s iSCSI and
NES implementations and how they relate to ZFS, plus a few notes on
using SMB with ZFS.

SMB

You can share ZFS datasets over SMB using a program like Samba
(https://www.samba.org). It works exactly like Samba on any other
filesystem. ZFS imposes literally zero restrictions or requirements
on Samba, although you probably want to set casesensitivity to
mixed on datasets shared with Windows clients via SMB.

ZFS datasets shared via Samba can seem weird to SMB clients,
however. As a pool fills up, clients see the size of the dataset shrink. We
discuss this in detail in FreeBSD Mastery: ZFS, but it’s worth repeating
here: if you monitor free space via SMB, you’'ll get terribly odd results.
FreeNAS includes special support to show space utilization to Win-
dows users correctly.

You can leverage Samba with ZFS to replicate many features
found on Windows file servers. For example, with a bit of work, ZFS
snapshots can be accessed through Windows Volume Shadow Copy.
FreeNAS uses many such tricks to support Windows clients.

If your main role for ZFS is to support Windows clients with SMB,

the authors strongly recommend using FreeNAS.

45

Chapter 3: Sharing Datasets
iSCSI

You can share zvols through any iSCSI target software you prefer.
FreeBSD 10 and newer includes the Cam Target Layer daemon ctld(8),
which serves as an iSCSI target. The ctld(8) software generally has
higher performance than the istgt package used in older FreeBSD
versions.

The ZFS administration tools do not integrate with either FreeBSD
iSCSI target software yet, however. Manage sharing of zvols within
ct1d, not with zfs(8). We'll cover configuring a zvol-backed iSCSI
target and some performance considerations for ZFS-backed iSCSI
devices.

For much more detail on iSCSI and how not to use it, check out

Lucas’ FreeBSD Mastery: Specialty Filesystems.

Target Configuration

An iSCSI target provides SCSI-style storage services over the network.
You might think of it as an iSCSI server, but a target is subtly different
from a server. An iSCSI target never initiates any activity on its own.
All requests must come from a client, or initiator.

Basic iSCSI services require a portal group, a target, and a Logical
Unit Number or LUN. A portal group is a name given to a specific
combination of IP address and TCP port. (“All IP addresses on this
host” is a valid component of a portal group.) A target is a specific
group of storage devices exported via iSCSI. One portal group can
have any number of targets. A LUN is a single storage device within a
target.

Here’s a snippet of /etc/ct1.conf that defines a single portal

group.

46

Chapter 3: Sharing Datasets

portal-group groupO {
discovery-auth-group no-authentication
Tisten 0.0.0.0

Tisten [::]

3

The portal group is named group0. While we can (and should)
configure authentication for a production iSCSI target, we don’t need
authentication to get started. This portal group is available on all IPv4
and IPv6 IP addresses on the machine.

Next we define a target for this portal group. This target contains
one LUN.

target ign.2013-11.org.mwlucas:targetO {
auth-group no-authentication
portal-group groupO
Tun 0 {
path /dev/zvol/vm/dbl
size 1T

}
}

Names for an iSCSI target are based on the domain name of the
organization providing the target. Theoretically you can name your
iSCSI targets almost any way you please, but some initiator software
attempts to use the name to set optimizations. It’s best to not copy
target names from your commercial SAN provider.

The naming scheme for iSCSI devices always starts with the string
ign. You then have the year and month the domain name was regis-
tered, followed by the domain name in reverse. Here, mwlucas.org
was registered in November of 2013, so the target name starts with
iqn.2013-11.org.mwlucas. We then have a colon and the name of this
specific target.

Like our portal group, this target does not require authentication.
The portal-group keyword ties us to the group0 portal group created

earlier.

47

Chapter 3: Sharing Datasets

This target has a single LUN, number 0. We give the path to the
file or device node and the size of the target. Note the device node we
use here, /dev/zvol/vm/dp1. While a zvol might have multiple device
nodes, always access the device node for iSCSI exported-zvols under
/dev/zvol. It's best to create such zvols with a volmode of dev, so that
the server's GEOM layer doesn't taste and preconfigure the zvol.

Once /etc/ctl.conf exists, start ctld(8).

service ctld start

Status and error messages appear in /var/log/messages.
If ctld(8) doesn’t fit your needs, use any target software you prefer.

Use the zvol's device node to offer it to your initiator.

Network File System

Entire books have been written about the Network File System, or
NES. Many different operating systems support NES, either as a server
or a client or both. For this book, we’ll focus on offering NFS shares
through the ZFS-integrated tools.

NFS Configuration Types

You can manage ZFS-backed NFS exports with the traditional
FreeBSD /etc/exports file, and nothing horrific will happen to you.
If you're an old FreeBSD hand, /etc/exports might even feel more
comfortable. But zfs(8) handles many aspects of NFS management for
you, and works identically across all ZES platforms.

However you manage NFS on your host, we strongly encour-
age you to choose a single method and stick with it. Don’t use both
/etc/exports and ZFS to manage your NFS shares. FreeBSD reads
share information from both locations, making troubleshooting even

more annoying.

48

Chapter 3: Sharing Datasets

A FreeBSD host must have an /etc/exports file to serve NES
shares, even if you manage NFS entirely within ZFS. The simplest way
to get this is touch /etc/exports, although you might want an exports
file that contains only comments directing other sysadmins to zfs(8).

As with iSCSI, were not going to completely cover NFS. We'll
cover managing NFS from a ZFS perspective, drawing comparisons to

traditional NFS configuration where useful.

Enabling NFSv2/v3

Enabling NFS at the ZFS level does nothing if the host isn’t running
the services required for NFS. Set the following in /etc/rc.conf to

start the processes needed to serve NFS at boot.

nfs_server_enable=YES
rpcbind_enabTle=YES
mountd_enable=YES
rpc_lockd_enable=YES
rpc_statd_enable=YES

Not all environments require all of these services, but turning
them on doesn’t use many system resources and offers the widest
range of compatibility and decent performance.

You also must allow hosts on your network to access rpcbind(8),
with an /etc/hosts.allowentry. Here I let the network 203.0.113.0/24

access my NFS services.
rpcbind: 203.0.113.0/255.255.255.0 : allow

Without this hosts.al110w entry, your clients will drive you to the

brink of madness with meaningless NFS errors.

Configuring NFSv2/v3 via ZFS

ZFS configures NFS on a per-dataset basis. The ZFS property sharents
dictates how a dataset is shared. This property can be set to on, off, or

to NFS share options for the dataset.

49

Chapter 3: Sharing Datasets

If set to off, ZFS does not configure sharing for this dataset. The
dataset could still be shared via /etc/exports, however.

Setting this property to on shares the dataset via NFS. It's equiva-
lent to listing the filesystem by itself in /etc/exports. Setting sharents

to on for zroot/nome would be like the following /etc/exports entry.

/home

Any host anywhere in the world could access and NFS mount this
host.

It would be far more sensible to set access for only those hosts we
want to allow.
zfs set sharenfs=7203.0.113.208” zroot/home

This generates an /etc/zfs/exports like this.
/home 203.0.113.208

If you must enter more complicated values in the properties, en-

close them in quotes or otherwise escape them.

zfs set sharenfs="-network 203.0.113.0 -mask
255.255.255.0” zroot/home

Any entries that make valid /etc/exports entries are usable as
values for sharenfs.

The sharents property cannot support any NES configuration that
requires multiple lines in /etc/exports. For these environments, you

must use a traditional exports file.

Enabling NFSv4

NEFSv4 is a whole different protocol from NFSv2 or v3. Don’t enable
NEFSv4 unless you understand it. This section gets those people who
already have some NFSv4 know-how up and running.

To enable NFSv4, set the following in /etc/rc. cont.

nfs_server_enable=YES
mountd_enable=YES
nfsv4_server_enable=YES
nfsuserd_enable=YES

50

Chapter 3: Sharing Datasets

You'll also need a single line in /etc/exports, defining the root of
your NEFS tree. This is normally the filesystem root.
va: /

Enable and disable NFS sharing with the sharenfs property on

individual datasets.

Configuring NFSv4 via ZFS

As with older NFS versions, use the sharenfs property to configure
exports for a single dataset. NFSv4 exports everything in a directory
tree, however, so inheritance plays a pretty big role.

Setting sharenfs to on tells NES to share the dataset with everyone,
without restrictions. You rely entirely on firewalls or packet filters to
prevent unauthorized access to this dataset and its descendent data-
sets. Like other ZFS properties, sharents is inherited. If you share
zroot/home, you're sharing all the home directories beneath it.

Setting sharents to off tells NES to not share this dataset. Use this
to deliberately override a parent dataset’s sharents setting.

Setting this to an IP address, or a mask statement, shares the data-

set exactly as it does for NFSv2/3 exports.
Debugging ZFS NFS

FreeBSD assembles the sharents properties into an exports file,
/etc/zfs/exports. If you're familiar with NFS, checking this file might
give you insight into why the file shares are working as they do.

Check /var/1og/messages on the client and server for hints as to
why a mount fails. The most common errors we see, after hosts.allow
and firewall problems, are invalid sharents properties. After decades
of practice, Lucas still specifies allowed networks as CIDR blocks rath-
er than in the NFS-friendly format.

51

Chapter 4: Replication

What exactly is [/ replo’'kaSH(a)n/] anyway? In ZFS, it means making
an exact copy of your filesystem someplace else. That other place can
be another dataset in your pool, a second pool on your system, an
external drive, a remote system, a tape, or just a file. You can declare “I
want this filesystem in that place,” and make it happen. ZFS replication
has a few design features that make it especially powerful.

Programs like dump(8) and rsync(1) expect the receiver to some-
how acknowledge receipt of the data. The ZFS replication process
is unidirectional—the sender does not need any feedback from the
receiving side. As replication doesn’t expect any acknowledgement, the
ZFS recipient doesn't need any intelligence; it only needs to accept a
stream of bytes and do something with them.

The replication system is integrated with snapshots. A snapshot
is a static, unchanging entity, which means that the transmitted ZFS
dataset is fully coherent, unlike dumping or rsyncing a live filesystem.
Snapshot-based replication also means you can do incremental repli-
cation, sending only the blocks that have changed between two snap-
shots. With incremental replication, you never have to send the same
data twice.

ZFS’s replication feature is designed to fully utilize all of your
disks. The only limitation to how fast you can replicate data between
machines is the speed of your network link.

ZFS replication consists of two parts: zfs send, which serializ-
es a snapshot or series of snapshots into a single data stream, and

zfs receive, which turns that stream back into a ZFS filesystem.

53

Chapter 4: Replication

But | Have Rsync!

For decades now, rsync(1) has been the standard tool for synchro-
nizing files between machines. To synchronize files, rsync walks the
directory tree, evaluates the timestamps and cryptographic checksums
of each file, and compares them to the files on the remote side. Many
organizations have deployed extensive rsync-based infrastructure.

ZFS is designed from the disk up for maximum performance. It
beats rsync so badly that rsync’s mom needs urgent medical attention.
ZFS maintains a list of blocks on disk that differ between each snap-
shot. The replication process doesn’t need to determine which files
have changed—the filesystem itself already has that information. The
replication process starts sending those blocks, as quickly as possible,
immediately. As the changed blocks contain all the metadata to re-
assemble the files, the replication process doesn’t even need to know
which files those blocks belong to.

While rsync is walking your filesystem, looking at each file, check-
ing its timestamp, calculating a checksum, and comparing those to the
versions on the other side, ZFS has already finished. If you have 10 TB
of data, and only 1 GB has changed, rsync still needs to check every
file. ZFS just grabs the 1 GB of changed blocks and sends them.

A sysadmin who needs faster rsync synchronization can tell rsync
to cheat and assume that if the last modified time on both the local
and remote files are the same, the file has not changed. (This is not
actually always true, but don’t hold that against rsync—the sysadmin
should know better.) When a file’s timestamp has changed, rsync
calculates checksums on chunks of the file on both sides, and com-
pares the checksums. If it finds a difference, it then calculates a delta
and sends that across. This means that if you make a small change to
a large file, rsync must read and checksum the entire file on both the

local and remote side. Using rsync to maintain a copy of that 500 GB

54

Chapter 4: Replication

VM disk image on a backup machine eats a whole bunch of disk band-
width and processor time.

Each block in ZFS has a birthtime, the transaction group ID of
when the block was created. The replication process sends any block
newer than the last time replication was run. It doesn’t matter if the
blocks come from a new file, or the middle of a huge file.

The advantages of snapshot-based replication really come into play
when you regularly synchronize filesystems. Suppose you replicate a
snapshot on a remote backup server. An hour later, you create a new
snapshot and incrementally send that snapshot to the backup server.
ZFS finishes in a few seconds, while rsync is still walking the first level
of directories.

Rsync(1) supports a snapshot backup mode. Snapshots in rsync are
completely different than ZFS snapshots, however. With rsync snap-
shots, if you modify 1 byte of a 1 GB file, rsync keeps two entire copies
of the file. ZFS, on the other hand, keeps the two different copies of a
single block. The two versions of the file share the rest of the blocks.

In rsync’s defense, it is a cross-platform, cross-filesystem tool.

You can use rsync to synchronize directory trees between operating
systems and between filesystems. Lucas has used rsync to synchro-
nize directory trees between wildly different Unix-like platforms, like
FreeBSD and AIX and Linux.

But if you're using ZFS, replication is uniquely suited to deal with
ZFS. Replication understands and duplicates ZFS properties. It can
maintain the relationship between a clone and its parent, whereas
rsync would lose this link and surrender all of your space savings.
Rsync(1) doesn’t work so well on raw block devices, but ZFS repli-
cation works with zvols. Replication uses the filesystem’s integrated
checksums as well, so there’s no risk of the files you receive somehow

differing from the originals.

55

Chapter 4: Replication

ZFS replication is also version agnostic. New pool features are
enabled only if you deliberately add the command-line flags to request
them. This lets ZFS replication easily move data between pools of

different versions.

Why Replicate?

Replication comes into play many ways: most obviously in backups,
but also in testing, virtualization, and data migrations.

You do remember that RAID is not a backup, right? Even
RAID-Z3 is not a proper backup. When your machine catches on fire,
when law enforcement confiscates all hardware at your hosting pro-
vider, or when you accidently delete that vital dataset, RAID-Z3 will
not save you. Replicate your important pools to an external drive, a
backup machine, or a tape library. Now you can get it back even after
complete loss of the hardware. The beauty of ZFS is that after the ini-
tial replication, every backup can be an incremental.

Let’s take it a step further. Maybe just being able to recover your
data is inadequate. You must guarantee that your data is always ac-
cessible, 24x7x365. You need High Availability. Replicate your data
to a second and third server, with incremental snapshots every few
minutes. Now you always have your data ready to go on n+2 hot spare
servers. Put one of those backup servers at a remote location, and you
are protected even against total facility destruction.’”

So, that nice dataset of customer data you have there. Youd like to
test the new version of your billing system with that. Rather than clon-

ing the data on the same machine, you need a completely separate

7 Arranging geographic high availability on your IT staff is a
separate problem. We recommend letting everyone work from home.
For best results, buy them homes in places like Fiji and the Seychelles.
Stick the unpopular guy in Moose Burp, Alaska.

56

Chapter 4: Replication

copy in the dev environment. Whether the target is a remote machine
or a new dataset on the same pool, ZFS replication is the fastest and
most reliable way to copy data.

Do you have dozens or hundreds of identical machines, VMs, or
containers? Use ZFS replication to deploy your perfectly crafted image
everywhere. If you design your systems properly, you can even use
incremental replication to deploy updates.

Replication also greatly simplifies migrating data, even huge
amounts of data over ridiculous distances. Maybe you have to migrate
a massive dataset to the other side of the country, or across the plan-
et. With enough data, even 10 Gb/s Ethernet in the same datacenter
seems too slow! Suppose you have many terabytes of data that are
always in use and undergoing constant minor churn, such as a cus-
tomer database. Copying that data over the Internet to the opposite
end of the country, or the world, will take days—but by then, the data
will have changed. An rsync-based replication process takes so long
that it will probably never catch up. Your database administrators are
smart folks, and probably can come up with a clever plan for moving
the data with some sort of complicated data segmentation. These plans
can be done successfully, but increase risk and always impose a heavy
workload and frustration.

If the bandwidth available for synchronization exceeds the rate of
change in the data, use ZFS instead. Your first ZFS replication, which
includes every scrap of data from this huge dataset, might take a few
days or weeks. You might even find it more practical to perform the
first synchronization via tape and overnight shipping. When this syn-
chronization finishes, though, a second replication from a new snap-
shot won't take nearly as long. With a few iterations, so long as your
rate of change is slower than the bandwidth available for backup, ZFS

replication catches up to nearly real time.

57

Chapter 4: Replication

On Big Switch Day, freeze the dataset for a few moments while
you replicate the most recent set of changes. You'll probably have a few
moments of panic over load balancers, firewalls, new servers, and all
the other gadgets needed to support such a massive dataset, but the

data itself won't be the problem.

Basic Replication

ZFS doesn’t replicate datasets. It replicates snapshots. Snapshots don’t
change during replication (or any other time), so they’re guaranteed to

be internally consistent. Start by creating a snapshot of your data.

zfs snapshot mypool/somedata@snappycomeback

Now let’s replicate this snapshot both locally and on a remote host.

Local Replication

ZFS replication is unidirectional, meaning that it doesn’t need any

feedback from the receiver. This means you can dump the snapshot
into any other program, using standard Unix shell redirections and
pipes. Here, I feed the output of z£s send into a regular file. (If you

add the -v flag, zfs send prints a progress summary every second.)

zfs send mypool/somedata@snappycomeback > backup_file

This file is our first use of ZFS replication, so it’s not incremental.
It contains everything in the snapshot. It’s about the same size as the
dataset. It's not exactly useful as-is, however—very few people can read
a streamed filesystem without turning it back into a filesystem.® So let’s
feed this dataset back into ZFS with zfs receive.

zfs receive mypool/copy < backup_file

8 The people who can read a streamed filesystem without turn-
ing it back into a filesystem have far better uses for their time.

58

Chapter 4: Replication

Z£s(8) reads the replication stream from the backup file and create
a new dataset from it, an exact duplicate of the original dataset.

You don’t need a file in the middle of local replication. This is a
Unix-like system. We have the miracle of pipes. This host has home

directories on the root pool, but I'm moving a copy to a new pool.

zfs send zroot/home@weds | zfs receive mypool/home

I can now shuffle a couple dataset mount points and move my
home directories to the new pool.

ZFS’ unidirectional nature lets you replicate to anything you can
aim a command at, such as a tape. With pipes you can pour zfs send
through SSH and into zfs receive, letting you replicate a dataset on a

remote machine.

Viewing Replicas

Want to see the inside of a stream file? The zstreamdump(8) utility
examines streams and exposes their details. You can examine a file, or

read directly from zfs send.

zstreamdump < backup_file
The zstreamdump program responds with one section like this for

each and every snapshot within the zfs send stream.

BEGIN record

hdrtype = 1

features = 4

magic = 2f5bacbac

creation_time = 56a53713

type = 2

flags = 0x0

toguid = 424654598740125b

fromguid = 0

toname = mypool/somedata@snappycomeback
END checksum = 14035a747cefd2/65f5a463eb542710/
3e70de6ff7d7456/497949c053fadcb3

59

Chapter 4: Replication

This output has a bunch of information about the zfs send stream.
The hard part is, none of it is presented in a human-friendly manner.
Even so, we can extract a few chunks of information from it.

The creation_time field gives the time zfs send was run, in the
convenient measure of seconds from the Unix epoch—in hex, of
course, because why wouldn’t you use hex for dates? Convert this
value (56a53713) to a human readable value with date(1). Put a Ox in

front of the value to identify it as a hex value.

$ date -r 0x56a53713
Sun Jan 24 15:41:55 EST 2016

On non-FreeBSD hosts, date might not accept hex values. While

there are many ways to do this conversion, you might try something
like this.

$ printf “%d\n” 0x56a53713 | xargs date -r

Each snapshot has a human-readable name, given in the toname.
This snapshot is called mypoo1/somedata@snappycomeback, and illu-
minates the importance of using meaningful names for datasets and
snapshots.

Each snapshot within a stream also has a globally unique identifier,
or GUID. This snapshot’s GUID appears in the toguid field.

The fromgid field is used for incremental ZFS sends (see “Incre-
mental Replication” later in this chapter), including only the changes
between two snapshots. It’s zero in this example, meaning that this
zfs send stream contains a complete snapshot. It’s not an incremen-
tal. As it's a complete snapshot, restoring this zfs send stream to a
live dataset would make sense. (You could restore an incremental ZFS
stream, but youd need a copy of the snapshot it’s based on.)

If a stream has multiple snapshots in it—say, from an incremental

or recursive zfs send—you can use the foguid and fromguid values to

60

Chapter 4: Replication

piece together how the snapshots fit together. It’s probably easier to re-
store the zfs send stream to a dataset and look at it that way, however.

Each section ends with a checksum. You can’t use the checksum to
manually verify the snapshot in this section, but it’s nice to know that
ZFS uses checksums.

After the details on each snapshot, zstreamdump prints a summary.

SUMMARY :
Total DRR_BEGIN records

=5
Total DRR_END records = 6

mTota1 records = 170
Total write size = 10523136 (0xa09200)
Total stream length = 10554216 (0xalOb68)

The summary includes a whole bunch of ZFS internal metada-
ta. The most interesting parts here are the number of DRR_BEGIN
records, which corresponds to the number of snapshots in this stream.
The sizes at the end are in bytes. The write size is the size of the data
included in the stream, while the stream length is the size of the
stream itself. (A ZFS send stream has metadata for restoring data to
disk that doesn’t need to get written to the disk.)

Remote Replication

In order to replicate ZFS to a remote host, the remote host needs a
user that can accept the replication and a secure pipe to that remote
host. The most common type of secure replication pipe is SSH, so we’ll
assume that’s your tool. In the long term, the easiest way to use SSH is
with key-based authentication. If youre not familiar with key-based
authentication, consult any number of online tutorials or Lucas’ SSH
Mastery (Tilted Windmill Press, 2012).

You could use the root account to receive replication streams,
but that means permitting SSH logins as root. SSH as root is a bad
idea. Don't do it. And do you really want some shell script maintained

61

Chapter 4: Replication

by this random guy somewhere on the Internet stomping around with
root on all of your machines? Instead, create an unprivileged user
and assign it replication rights, as discussed in Chapter 2.

Similarly, while you can send ZFS datasets as root, you might

want an operator or normal user to have the ability to send datasets.

Replication Users and Datasets

On both the sending and receiving hosts, we create a user dedicated to
replication. Our sample user is called replicator. It needs a shell,
but no special group memberships.

local# pw user add replicator -m -s /bin/sh
remote# pw user add replicator -m -s /bin/sh

On the sending host, the replication user needs the send
and snapshot privileges on the dataset to be sent. Here we give

replicator these privileges on user home directories.

zfs allow -u replicator send,snapshot zroot/usr/home
The sending user needs an SSH keypair. A user who is using his

own account on both the sending and receiving sides can use their

own SSH keys for this. For dedicated accounts, generate a keypair with

ssh-keygen(1).

su replicator

$ ssh-keygen

The ssh-keygen program prompts you for a passphrase. If a human
being will use this account to send ZFS datasets, use a passphrase. If
this is for an automated process, use an empty passphrase.

The key is the file . ssh/id rsa.pup in the user’s home account. We
also recommend restricting which hosts can use this key to log in to
the remote machine, to help protect the remote host and your backups

in the event this key is stolen.

62

Chapter 4: Replication

Now have this unprivileged user install the public key in their ac-
count on the remote machine. Here we send the new key to an account

with the same username on the host hotspare.
$ ssh-copy-id -i .ssh/id_rsa.pub hotspare

Verity that you can log into the receiving host as this user.

On the receiving host, the user must own the mount point of the
recipient dataset. The system must also permit unprivileged users to
mount filesystems on directories they own, using the vfs.usermount
sysctl.

zfs create -o mountpoint=/backup remotepool/backup

chown replicator:replicator /backup
sysctl vfs.usermount=1

Our unprivileged user needs the compression, create, mount,
mountpoint, and receive ZFS privileges on the target dataset. Here I
assign the replicator user privileges on the remotepool/backup dataset.
If you intend to automate ZFS replication, including destruction of

outdated snapshots, you'll want to add the destroy property.

zfs allow -u replicator compression,mountpoint,create,
mount, receive remotepool/backup

This unprivileged user can now replicate this dataset.
If you want to replicate all of the dataset’s properties, you must
allow the replicator user to set all of those properties. See Chapter 2 for

details on how to create a permissions set.

Dataset Full Remote Replication

To replicate a ZFS dataset, first create a snapshot. I gave my unprivi-
leged user permission to create snapshots exactly for this purpose, so
let him do it.

$ zfs snapshot zroot/usr/home@monday

63

Chapter 4: Replication

Now use zfs send to transmit this snapshot, pipe that into SSH,
and dump it into zfs receive. Remember, ssh(1) lets you execute
commands on the remote host. Since this is the first time we have
replicated this dataset, the send stream includes every block in the

snapshot.

$ zfs send zroot/usr/home@monday | \
ssh user@host zfs receive remotepool/backup

In addition to replicating to a pool on another machine, you can
replicate to the same pool or a second pool on the same machine, to a
file, or to a pipe. Replicating to a file or pipe can be useful for backups,
such as to tape, or to a different filesystem.

You can have a host log into another host to trigger the zfs send if

you prefer, changing ZFS replication from a push model to a pull one.

$ ssh user@host zfs send zroot/usr/home@monday | \
zfs receive remotepool/backup

This book assumes that you're sending from a local dataset for

consistency, but everything works in the other direction.

Incremental Replication

The real power comes from incremental replication. Now that we have
replicated all of the data from the dataset as of Monday, Tuesday’s rep-
lication needs to send only the blocks that have changed. The receive
side of the command doesn’t change at all, but on the send side we use
the -1 flag to indicate the most recent snapshot sent.

$ zfs snapshot zroot/usr/home@tuesday

$ zfs send -i @monday zroot/usr/home@tuesday | \
ssh user@host zfs receive remotepool/backup/home

ZFS sends only the blocks that have changed between the
@monday and @tuesday snapshots, saving time and bandwidth.

Now look at the dataset on the receiving system.

64

Chapter 4: Replication

zfs Tist -t snap -r zroot/backup

NAME USED AVAIL REFER MOUNTPOINT
zroot/backup/usrhome@monday 8K - 49.0M -
zroot/backup/usrhome@tuesday 0 - 49.0M -

Two snapshots now show up.
One common mistake with incremental backups is not specifying
the last snapshot that exists on the remote system. If you don’t specify

the most recent snapshot that was transmitted, you’ll get an error.

zfs send zroot/usr/home@tuesday | \

ssh hotspare zfs recv remotepool/backup/usrhome
cannot receive new filesystem stream: destination
remotepool/backup/usrhome’ exists
must specify -F to overwrite it

The danger of an error message like this is that it offers ways to
make the error disappear, rather than suggesting ways to fix the under-
lying problem. Overwriting the remote dataset wipes out your older
snapshots and resends all the data.

When using -1, you can skip the @ sign in front of the snapshot
name. The -i flag means “this is a snapshot,” so it can safely assume

that you meant to put the @ in front but just couldn’t be bothered.

Incremental Replication Assumptions

Incremental backups to tape are pretty much fixed: you might over-
write them, but in the 21st century you wouldn't go in and edit a file
directly on the tape. Incremental backups written to disk are very easy
to change, though.

Incremental replication requires that the receiver’s copy of the
dataset doesn't change between replication runs. Changes in the copy
ruin the whole process. If you edit the backup copy of the dataset, the
next incremental update will no longer plug into the backup copy.

If you want to edit a dataset replica on the backup machine, create a

clone of the received dataset and edit that.

65

Chapter 4: Replication

If someone accidentally or ignorantly edited the replica, roll the
changes back to the last common snapshot. Have the receiver force a
rollback to the matching remote snapshot by adding the -r flag to the

2fs receive command.

zfs send -i @monday zroot/usr/home@tuesday | ssh \
user@hotspare zfs receive -F remotepool/backup/home

Prevent alterations to replica datasets by setting the ZFS property
readonly to on for the replicated datasets. With the privileges given

earlier, users can add snapshots to write-only datasets.

zfs set readonly=on remotepool/backup

You can still add snapshots under remotepoo1/backup. You can
examine the files in the dataset. But nobody can edit the files without
changing the ZFS readon1y property. And anyone with that access
should either know better or have a desperately urgent need to make

that dataset live, right now.

Differential Replication

ZFS replication can be done on any two snapshots on the same dataset,
so you can also do differential backups. Using the -1 flag (uppercase
i), instead of -i sends all snapshots that exist between the two snap-
shots.

Suppose Tuesday’s snapshot replication fails because of a random
network issue.” On Wednesday, you want to send both Tuesday’s and

Wednesday’s snapshots.

zfs send -I @monday zroot/usr/home@wednesday | \
ssh hotspare zfs recv remotepool/backup/usrhome

The recipient now has Tuesday’s snapshot, even though you never

explicitly sent it.

9 Sysadmins may blame any problem that occurs once on “ran-
dom network issues.” It’s in the Code of Conduct.

66

Chapter 4: Replication

Folks with experience running backups will realize that we're
using the words “incremental” and “differential” in a slightly different
way than most backup software does. Backup software is written for
sending blocks to tape, and minimizing the number of tapes you need
to use to restore files. We could invent a new language, we could go
digging for precisely suitable but unfamiliar words,'® or we can stretch
existing language just a little.

SSH Bandwidth Limitations

You might find that an SSH connection is not fast enough for your
needs. Those of you who need replication faster than a couple hundred
megabytes per second probably should consider an external security
solution, such as a dedicated VPN. SSH won't carry data that quickly

without very specific modifications, so consider mbuffer(1).

The Complexities of Incremental Replication
ZFS replication is unidirectional, from the sender to the receiver. The
sender gets no feedback from the receiver, permitting dumping the
stream to just about anything. This becomes important when deciding
between incremental and differential replication.

Incremental backups (with -i) send all blocks that have
changed between the birthtimes of the first snapshot and the
last snapshot, without sending any snapshots that exist in be-
tween. If a dataset has a snapshot for each day of the week,
zfs send -i monday zroot/usr/home@thursday generates a stream
that depends on the @monday snapshot existing on the receiving side,
and results in the @thursday snapshot being created there. Any inter-

vening snapshots do not get replicated.

10 Lucas would find deep joy in making you learn some obscure
word that fits ZFS backups perfectly. Probably from a tonal language,
but adding both Bantu and Khoisan clicks. Jude thinks that Lucas has
no manners.

67

Chapter 4: Replication

Differential backups (with -1) work exactly like incremental
backups, but they create any intermediary snapshots. A command
like zfs send -1 @monday zroot/usr/home@thursday requires that the
@monday snapshot exist on the remote side, and it creates the absent
@tuesday and @wednesday snapshots in passing.

Assume you've automatically taken daily snapshots of a dataset,
and you want to ship them over to the remote server. Replicate the

@monday snapshot to the remote pool:

zfs send zroot/usr/home@monday | \
zfs receive hotspare remotepool/backup/usrhome

Check on your remote host to verify the presence of the @monday
snapshot.
zfs 1ist -t all -r remotepool/backup/usrhome
NAME USED AVAIL REFER MOUNTPOINT
remotepool/backup/usrhome 19.5K 472M 19.5K /remotepool/weekday
remotepool/backup/usrhome@monday 0 - 19.5K -

Now incrementally replicate the @tuesday snapshot.

zfs send -i monday remotepool/backup/usrhome@tuesday \
| zfs receive remotepool/weekday

Checking the remote host, you’'ll find both snapshots.

zfs 1ist -t all -r remotepool/backup/usrhome

NAME USED AVAIL REFER MOUNTPOINT
remotepool/backup/usrhome 29K 472M 19.5K /remotepool/weekday
remotepool/backup/usrhome@monday 9.50K - 19.5K -
remotepool/backup/usrhome@tuesday 0 - 19.5K -

On Wednesday you were off gallivanting about—uh, I mean, “out
sick’—so you didn’t do the replication. Thursday, you want to catch

up, so you do a differential replication of the @thursday snapshot.

zfs send -I tuesday zroot/usr/home@thursday | \
zfs receive remotepool/backup/usrhome

Our hot spare host now has four snapshots.

68

Chapter 4: Replication

zfs 1ist -t all -r remotepool/backup/usrhome

NAME USED AVAIL REFER MOUNTPOINT
remotepool/backup/usrhome 48K 472M 19.5K /remotepool/weekday
remotepool/backup/usrhome@monday 9.50K - 19.5K -
remotepool/backup/usrhome@tuesday 9.50K - 19.5K -
remotepool/backup/usrhome@wednesday 9.50K - 19.5K -
remotepool/backup/usrhome@thursday 0 - 19.5K -

But suppose koala-related mayhem costs you sleep Thursday
night. You stagger in Friday morning determined to get through the
day without breaking anything. Setting up the day’s replication, you
accidentally try to do an incremental (-i) zfs send from @monday to
@friday.

zfs send -i monday mypool/weekday@friday | \

zfs receive remotepool/weekday
cannot receive incremental stream: destination
remotepool/weekday has been modified since most recent
snapshot.

You might know darn well you haven’t modified those snapshots.
Nobody’s allowed to log onto that machine. But it has been modified—
the @tuesday, @wednesday, and @thursday snapshots are in the way.

If you are not sure what snapshots might exist on the remote end,
you can use -I to send all intermediary snapshots. Alternatively, you
could specify -rin the zfs receive command to force it to remove

anything that is in the way.

zfs send -i @monday zroot/usr/home@friday | \
zfs receive -F remotepool/backup/usrhome

The unpleasant side effect of using zfs receive -r to “remove
anything that is in the way” is that it destroys the intermediate snap-
shots.

69

Chapter 4: Replication

zfs 1ist -t all -r remotepool/weekday

NAME USED AVAIL REFER MOUNTPOINT
remotepool/backup/usrhome 29K 472M 19.5K /remotepool/weekday
remotepool/backup/usrhome@monday 9.50K - 19.5K -
remotepool/backup/usrhome@friday 0 - 19.5K -

We want those snapshots back, so let’s try that again. On your hot

spare host, eliminate the newest snapshot.

zfs destroy remotepool/backup/usrhome@friday

Now have the sender retransmit all those snapshots, either one at
a time or en masse. Here we send one snapshot, just to be sure that we

didn’t break anything else on this bleary-eyed Friday.

zfs send -i monday mypool/weekday@tuesday | \
zfs receive -F remotepool/weekday

The fact that the replication is unidirectional means that in differ-
ential backups you could send overlaps, transmitting a snapshot that
already exists on the remote side. If we send all snapshots between
@monday and @friday, while the @tuesday snapshot already exists
on the remote pool, the source sends all of the changed data, even the
blocks that the remote side already has. The remote side fast for-
wards through the blocks it has, and then creates the snapshots that it
doesn’t—in this case, @wednesday through @friday.

Best practice here is to avoid koalas. And their mayhem.

Recursive Replication

ZFS also supports recursive replication, which replicates a dataset and

all of its children in one command. Here’s a sample pool with three

datasets.

NAME USED AVAIL REFER MOUNTPOINT
mypool 40IM 3.09T 192K /mypool
mypool/family 50.2M 3.09T 50.2M /mypool/family
mypool1/home 150M 3.09T 150M /mypool/home
mypool/work 200M 3.09T 200M /mypool/work

Take a recursive snapshot of the dataset and its children.

70

Chapter 4: Replication

zfs snapshot -r mypool@first
zfs 1ist -t all -r mypool

NAME USED AVAIL REFER MOUNTPOINT
mypool 40IM 3.09T 192K /mypool
mypool@first 0 - 192K -
mypool/family 50.2M 3.09T 50.2M /mypool/family
mypool/family@first 0 - 50.2M -

mypool/home 150M 3.09T 150M /mypool/home
mypool/home@first 0 - 150M -

mypool/work 200M 3.09T 200M /mypool/work
mypool/work@first 0 - 200M -

Now replicate that snapshot and all its children simultaneously,

using a recursive send.

zfs send -Rv mypool@first | \

zfs receive remotepool/backup
send from @ to mypool@first estimated size is 9.50K
send from @ to mypool/work@first estimated size is 200M
send from @ to mypool/family@first estimated size is 50.1M
send from @ to mypool/home@first estimated size is 150M
total estimated size is 401M

Recursive send also works with incremental (-1i) and differential
(-1) backups, in exactly the same way. Now you can forcibly destroy a

dataset and its children simultaneously!

Advanced Sending Options

A sender can alter how it sends datasets in several ways.

Sending Properties

To send dataset properties as well as the actual data, add the -p flag.
When the properties of the received dataset differ from those al-
ready on the dataset, z£s receive attempts to change the properties
to match those sent. That is, if you're replicating properties from a
dataset that uses 1z4 compression to a dataset that already uses 1z4,

zfs receive does nothing with that property. If the sender uses gzip-9
compression, though, the receiver changes to match the original.

The user receiving the dataset must have the permissions to set the

71

Chapter 4: Replication

properties you want replicated. If the user has permissions to replicate
some but not all of the properties, the permissible properties get set
and the disallowed properties are rejected.

Suppose our source dataset has dedup set to 01 and compression set
to gzip-9. The receiving dataset has dedup set to off and compression
set to 1z4. We want the receiving dataset to use the same compression,
but not the dedup setting. We permit our replication user to change

compression.

zfs allow -u replicator compress zroot/backup

When we send the dataset, we'll get an error.

cannot receive compression dedup on remotepool/backup:
permission denied

That’s fine—we don’t want the dedup property set on the replica.
The compression property is replicated as desired, though.

Why would we replicate properties, rather than just set them on
the destination? Manual configuration might be fine for simple prop-
erties like compression and dedup, but not so suitable for complicated

properties like sharen£s or any of the quotas.

Deduplicated Data Stream

Is your data deduplicated? Is it suitable for deduplication? ZFS lets you
deduplicate the zfs send data stream. With -p, each unique block is
sent only once. It doesn’t change what the recipient writes to disk, but
only affects the data stream.

Deduplicated data streams use a different set of deduplication
memory than that used by on-disk deduplication. If your data can be
effectively deduplicated, but that deduplication uses many gigabytes
of RAM, both the sending and receiving hosts need a similar amount
of memory to deduplicate the data stream. Don’t lightly deduplicate in

zfs send!

72

Chapter 4: Replication
Debugging and Testing

A zfs send supports a couple of options that can help with debugging,
testing, and monitoring.

The -v option makes zfs send verbose. It prints information about
the data to be sent and adds regular status updates.

The -p flag prints information about the send stream right when
the stream starts flowing. The manual describes this information as
“machine-readable” The information is readable by humans, but it’s
not nicely tabulated. It’s perfect for feeding to your scripts, however.

The -n flag prevents zfs send from actually sending any data.
Instead, when combined with either -v or -p, it gives statistics on what

zfs send would do if it actually ran.

Large and Small Blocks

Newer versions of ZFS can support disk blocks larger than 128 KB,
with the 1arge blocks zpool(8) feature. The -1 flag lets z£s send in-
clude large blocks rather than breaking them up into small blocks. The
recipient pool must also support large blocks.

For hosts with really small blocks, - shrinks the size of the data
stream by using the embedded data feature. The destination pool must

also support the embedded data feature flag.

Advanced Receiving Options

The receiver can adjust how it stores the incoming ZFS stream,

through arguments to zfs receive.

Path and Mount Management

A received ZFS stream includes the pool and dataset path of the ori-

gin. You can either retain this path or strip it out.

73

Chapter 4: Replication

By adding the -a flag, you tell z£s receive to use the source’ full
path (except for the pool name) as the path to the destination dataset,
rather than requiring the sysadmin to specify the destination dataset.
Earlier, we replicated zroot/usr/home t0 remotepool/backup/usrhome.
By using -d here, we tell z£s receive to use the source path on the

destination.

$ zfs send zroot/usr/home@monday | \
ssh hotspare zfs receive -d remotepool/backup

The receiver creates remotepool /backup/usr/home and sticks the
@monday snapshot there. This function is very useful when replicat-
ing many layers of datasets.

Alternatively, you can strip out most of the path information. By
adding the -¢ flag, you instruct z£s receive to use the last part of the
path to name this dataset. Here we run the same backup, but strip out

most of the path.

$ zfs send zroot/usr/home@monday | \
ssh zfs2 zfs receive -e remotepool/backup

The zfs receive command looks at the path zroot/usr/home and
discards everything but the last chunk, or home. The received data
stream goes into remotepool/backup/home.

Finally, the -u option tells z£s receive not to mount received
snapshots. The data’s there for mounting if the sysadmin desires, but

mounting the dataset might lead to changing the data.
Roll Back Changes

If someone has altered a received dataset, attempts to incremental-
ly add a new snapshot to that replica will fail. Datasets of received
snapshots must be pristine for zfs receive to accept incremental or
differential updates.

The -r flag tells z£s receive to roll back any changes that prevent

accepting this snapshot.
74

Chapter 4: Replication
Debugging and Testing

Much like zfs send, zfs receive supports verbosity and no-effect
options.

The -v option makes zfs receive verbose. It prints information
about the data received and adds regular status updates.

The -n flag prevents zfs receive from actually writing any data
to disk. Instead, when combined with -v it offers statistics on what
zfs receive would do if actually used.

While verbosity can be useful, the -n option has limited utility in
receiving data. The host will have sent data across the network to this
host, and the recipient will have done some numerical analysis and

discarded the data. To write the data to disk, you must re-send it.

Cloning on Receipt

You might need to send a dataset that you know you’re going to want
to muck with. As of FreeBSD 10.3, you can tell z£s receive to store
an incoming incremental replication stream as a clone rather than as a
snapshot. Cloning on receipt works only with incremental replication.

To have zfs receive create a clone, add the -o flag and define the
origin as the dataset you want to clone. The zfs receive command
takes that dataset, adds the incoming snapshot to it, and forks the
clone off the original.

Throughout this chapter we've been backing up zroot/usr/home to
a remote server. Assume we want a read-write clone of the Wednesday

snapshot. We'll start by cloning the Tuesday snapshot.

$ zfs send -i @Qtuesday zroot/usr/home@wednesday | \
ssh hotspare zfs receive \
-0 origin=remotepool/usr/home@tuesday \
remotepool /usr/wedshome

75

Chapter 4: Replication

The -0 origin statement tells z£s receive that were starting from
the snapshot remotepool/usr/home@tuesday and creating a clone. The
final argument gives the name of our clone, remotepool/usr/wedshome.
We can now go into /remotepool/usr/wedshome and make whatever
changes we desire, without interfering with further replications.

Remember that creating this clone doesn’'t add the transmitted
snapshot to the snapshots in the original destination, however. If we
want to also create remotepool /usr/home@wednesday, we must retrans-

mit it without the -0 origin option.

Bookmarks

Snapshots can take up a lot of space, especially on a busy filesystem.
If you have users building new software, downloading ISOs and then
discarding them, and dumping core files everywhere, snapshots can
get quite large. Unfortunately, incremental replications build off of
snapshots. Bookmarks are a way to get around the need to retain your
oldest snapshots, while still performing incremental replications.

An incremental replication doesn’t need to know all of the
blocks that have already been sent. It must know the birthtime of the
youngest block already sent, so that it can send all younger blocks. A
bookmark is a stripped-down snapshot, retaining only the birthtime
of the newest block in the snapshot. You can use a bookmark as the
starting point of an incremental replication.

Create a bookmark of the @friday snapshot of the weekday dataset.

Bookmark names begin with a hash mark (#).

zfs bookmark zroot/usr/home@friday \
zroot/usr/home#bm-friday

View your bookmarks with zfs 1ist.

76

Chapter 4: Replication

zfs Tist -t all -r mypool/weekday

NAME USED AVAIL REFER MOUNTPOINT
zroot/usr/home 360K 13.5G 96K /mypool/weekday
zroot/usr/home@monday 64K - 96K -
zroot/usr/home@tuesday 64K - 96K -
zroot/usr/home@wednesday 64K - 96K -
zroot/usr/home@thursday 64K - 96K -
zroot/usr/home@friday 8K - 96K -

zroot/usr/home#bm-friday - - - -

Now remove all of the snapshots from the source pool:

zfs destroy -v zroot/usr/home@%
will destroy zroot/usr/home@monday

You now have only the bookmark left.

zfs Tist -t all -r mypool/weekday

NAME USED AVAIL REFER MOUNTPOINT
zroot/usr/home 96K 13.5G 96K /mypool/weekday
zroot/usr/home#bm-friday - - - -

On Saturday, bake a fresh snapshot.
zfs snapshot zroot/usr/home@saturday
zfs 1ist -t all -r zroot/usr/home

NAME USED AVAIL REFER MOUNTPOINT
mypool/weekday 96K 13.5G 96K /mypool/weekday
mypool/weekday@saturday 0 - 96K -

mypool/weekday#bm-friday - - - -

Unhelpfully, bookmarks are listed after snapshots, even when they
are older than the snapshots. The ZFS command line is very expres-
sive, however. To make things easier, let’s use -t to tell it to list only
snapshots and bookmarks. The -s flag tells zfs(8) how to sort the
output, so we'll sort by the creation (creation date) property. Add in a
maximum recursion depth of I to ignore the snapshots of child data-

sets.

zfs 1ist -t snapshot,bookmark -s creation \
-d 1 zroot/usr/home

NAME USED AVAIL REFER MOUNTPOINT
zroot/usr/home#bm-friday - - - -
zroot/usr/home@saturday 64K - 96K -

77

Chapter 4: Replication
Now replicate the @saturday snapshot to the remote host, using
the bm-rriday bookmark as the fromsnap.

zfs send -i #bm-friday zroot/usr/home@saturday | \
ssh hotspare zfs receive remotepool/backup/usrhome

The remote host captured the @saturday snapshot as an incre-

mental snapshot, even though the source host no longer has Friday’s

snapshot.

zfs 1ist -t all -r remotepool/usrhome

NAME USED AVAIL REFER MOUNTPOINT
remotepool/backup/usrhome 58.5K 472M 19.5K /remotepool/
weekday

remotepool/backup/usrhome@monday 9.50K - 19.5K -
remotepool/backup/usrhome@tuesday 9.50K - 19.5K -
remotepool/backup/usrhome@wednesday 9.50K - 19.5K -
remotepool/backup/usrhome@thursday 9.50K - 19.5K -
remotepool/backup/usrhome@friday 1K - 19.5K -
remotepool/backup/usrhome@saturday 0 - 19.5K -

Bookmarks let us remove the snapshots from our source pool, sav-
ing space, but retain them on the destination pool so we can still refer

back to old versions of files.

Resumable Send

Just because ZFS makes dataset replication simple, doesn’t mean that
the real world cooperates. As a dataset grows in size, chances increase
that some transient network problem will break the connection and
interrupt the stream. If you're almost done with a 40 GB data stream
over the Internet, a two-minute outage at your ISP can spark some
well-deserved rage. Don't go after the carrier with an axe; use resum-
able z£s send instead, letting you resume interrupted replications.
Resumable zfs send first appeared in FreeBSD 10.3 in early 2016.

To make a ZFS stream resumable, add the -s flag to zfs receive.

78

Chapter 4: Replication

The mypoo1/from dataset is a few gigabytes in size. By adding -s to
the zfs receive statement, though, we make the stream resumable.
Which is good, because we're going to interrupt the transmission with
CTRL-C.

local# zfs snapshot mypool/from@resumeme

local# zfs send -v mypool/from@resumeme | \
ssh hotspare zfs receive -s remotepool/to
full send of mypool/from@resumeme estimated size is 2.00G
total estimated size is 2.00G
TIME SENT SNAPSHOT
17:12:43 279M mypool/from@resumeme
17:12:44 529M mypool/from@resumeme
17:12:45 786M mypool/from@resumeme
AC

Of course, because ZFS replication is unidirectional, the sender
has no idea which blocks the recipient actually captured and wrote to
the disk. Without resumable send, youd have to start the whole trans-
mission over again.

Over on the receiving host, the partially received dataset has a new
property, receive_resume_token. The sender needs the value of this

property to pick up where it left off.

remote# zfs get -H -o value receive_resume_token \
remotepool/to
1-db9al71a3-c8-789c636064000310a500c4e-
c50360710e72765a5269740d80cd8e4d3d28a534b40320b-
4c61f26c48f2499525a9c540da20ech02936fd25f9e9a599290c-
Ocae0dba41478e981fb24092e704cbhe725e6a6323014a5e6e-
697a416ed4e7e7e8a715e5e73a14a51697e6a68264100000648b1d2c

Now provide that token to the sender with the -t flag. You do not
need to include the source dataset, as the token includes everything
zfs send requires. Adding the -v spills out more details about the

transmission, though.

79

Chapter 4: Replication

local# zfs send -v -t 1-db9al71la3-c8-789c636064000310a-
500c4ec50360710e72765a5269740d80cd8e4d3d28a534b40320b4c61f-
26c4812499525a9c540da20ecb02936fd25f9e9a599290c0caeld-
ba41478e981fb24092e704che725e6a6323014a5e6e697a4l6ed4e7e7e-
8a715e5e73al4a51697e6a68264100000648b1ld2c | zfs receive -s
remotepool/to

resume token contents:

nvlist version: 0

object = 0x8

offset = 0x35a00000

bytes = 0x35c35630

toguid = 0xc237c4c4522d8045

toname = mypool/from@resumeme
full send of mypool/from@resumeme estimated size is 1.16G
TIME SENT SNAPSHOT
17:38:20 263M mypool/from@resumeme
17:38:21 472M mypool/from@resumeme

17:42:04 1.16G mypool/from@resumeme

Once the z£s receive completes, the property becomes blank.

zfs get receive_resume_token remotepool/to
NAME PROPERTY VALUE SOURCE
remotepool/to receive_resume_token - -

If you don’t resume that send, the destination pool will have an un-
usable, incomplete dataset on it, taking up space better used by, well,
anything. Delete that with -a.

remote# zfs receive -A remotepool/to

This removes the partially received stream and frees that space.

Automating Replication

Everybody wants backups, but backups that must be manually run are
not backups—because they won't happen. Sure, you'll do them once or
twice, but one day the coffee pot will break and you’ll barely be able to
remember where you left your spleen. Reliable backups demand auto-
mation and testing. Testing is always your problem, but for automation

we have zxfer.

80

Chapter 4: Replication

Zxfer(8) examines select local and remote datasets, determines
which snapshots must be replicated to synchronize the two sets of
data, and sends the datasets. It can also remove snapshots on the re-
mote side once they’re removed from the local pool.

FreeBSD does not include zxfer by default, but you can easily in-
stall it with pkg. As zxfer can work in both push and pull modes, you
only need to install it on one of the systems. For our demonstration,

we'll install it on both nodes.

pkg install zxfer

The zxfer command does not currently support either bookmarks
or resumable replication. It also doesn’t set up replication user ac-
counts. You must configure those accounts, create SSH keys, and set

permissions exactly as you would for normal replication.

Using zxfer

All of our replication examples have used push mode; the host with
the current datasets pushes them to a replication target. We'll start
with using zxfer similarly. Enable push mode with -1 and the login for
the remote host.

Using zxfer requires that you declare if you want to replicate a
single dataset, or the dataset and all its children. The -r flag enables
recursion, while -v indicates a single dataset and its snapshots. For
backups, recursive mode is almost always correct.

You might also add -v, for verbose mode.

$ zxfer -v -T user@host -R localpath remotepath

If the user account is the same on both sides, you can skip identify-
ing the user.

One thing to remember is that arguments that take an argument

of their own cannot be combined with arguments that don’t require

81

Chapter 4: Replication

that. You can use -v -T user@host, but -vT user@host makes zxfer
complain bitterly. (As zxfer is a shell script, it uses getopt(1) to han-
dle command-line arguments, rather than the fancy option handling
available in more complex languages.)

Here we replicate the zroot/somedata dataset to the pool

remotepool/backups on the host remote.

local$ zxfer -T replicator@remote \
-R mypool/somedata remotepool/backups
If you add the -v for verbose mode, you'll see zxfer transferring

each snapshot.

Sending zroot/somedata@snappy to remotepool/backups/somedata.
Sending zroot/somedata@reply to remotepool/backups/somedata.
(incremental to zroot/somedata@snappy.)

Sending zroot/somedata@more to remotepool/backups/somedata.
(incremental to zroot/somedata@reply.)

Once zxfer exits, the host remote has all the snapshots.

remote$ zfs Tist -t all -r remotepool/backups/somedata

NAME USED AVAIL REFER MOUNTPOINT
remotepool/backups/somedata 10.1M 15.0G 10.1IM /remotepool/
backups/somedata

remotepool/backups/somedata@snappy 8K - 10.1M -
remotepool/backups/somedata@reply 8K - 10.1M -
remotepool/backups/somedata@more 8K - 10.1M -

Further replication on top of these snapshots can run either in

push mode or in pull mode. Let’s try pull mode next.

Zxfer Pull Mode

In pull mode, zxfer logs into the remote machine via SSH and runs
zfs send to transfer snapshots back to the host running zxfer. Use the
-o flag with the login and host to indicate pull mode. Everything else is
the same.

$ zxfer -v -0 user@host -R localpath remotepath

Now create an additional snapshot on the source host.
local$ zfs snapshot mypool/somedata@new

82

Chapter 4: Replication

On the destination machine, run zxfer to pull the snapshots over.

Here were adding -v to show more detail of what really happens

remote# zxfer -v -0 replicator@local \

-R zroot/somedata remotepool/backups
Sending mypool/somedata@new to zroot/backups/somedata.
(incremental to zroot/somedata@more.)

The mounted dataset is updated with the new snapshot.
Rotating Snapshots

If you keep sending snapshots, eventually your remote pool will fill up.
You probably want to destroy remote snapshots that no longer exist on
the source machine. Use -d to accomplish this. Start by removing an
old snapshot.

local# zfs destroy zroot/somedata@reply
Use the -d flag to prune any deleted snapshots from the destina-
tion:

Jocal$ zxfer -vd -T remote \
-R zroot/somedata remotepool/backup

In verbose mode, zxfer displays each dataset it destroys as well as

those it creates.

Destroying destination snapshot
remotepool/backup/somedata@reply.

You can watch as your hastily-typed incorrect command destroys

your beloved data.
Keeping Old Snapshots

A common snapshot regimen calls for making snapshots every 15
minutes, and then every hour, day, week, and month. (We discuss
such a rotation scheme in FreeBSD Mastery: ZFS.) The host discards
15-minute snapshots after a few hours, hourly snapshots after a cou-

ple days, and so on. You certainly want those 15-minute snapshots

83

Chapter 4: Replication

discarded on the remote host, but you might want the remote host to
retain some snapshots even after the source destroys them. Many of us
want to keep weekly or monthly snapshots as long-term backups.

The -g flag lets you protect the oldest backups with an argument
of a number of days. For example, -g 375 tells zxfer to not delete
snapshots that are 375 days old or older.

Suppose you want to keep all the monthly snapshots, but automat-
ically remove any other snapshots that get removed from the source.
The source deletes monthly snapshots after three months, but weekly
snapshots after six weeks. Six weeks is 42 days. Add an extra week for
system anomalies, giving 49 days. Using a -g of 50 would tell zxfer to

not delete any snapshot 50 days old or older.

local$ zxfer -vd -g 50 -T remote \
-R zroot/somedata remotepool/backup

Eventually, your backup pool will fill up. You must go in and clean
out the snapshots that are so old they’re no longer useful. It’s no differ-

ent than cleaning out the corporate tape closet.

Properties and Disaster Recovery

You'll often want to replicate complex properties, like sharents and
any of the quotas. The - argument tells zxfer to set the properties in
the destination to match the source.

In some cases you want to know what the properties are, but you
don’t want to restore them immediately upon replication. The zxfer
command can copy dataset properties to a text file, letting you restore
from that file later.

The -« flag tells zxfer to create the properties text
file, in the root directory of the replica. The file is named
.zxfer backup_info, followed by a period and the pool name.

If you're replicating an entire host web5’s zroot pool to the

84

Chapter 4: Replication

remotepool/web5 on the backup host, the properties backup file will be
in remotepool/web5/.zxfer backup info.zroot.

Use the -e flag to restore the dataset and pool properties from this
text file.

A common configuration is for a host to have a pool set aside to
accept backups, and then a pool set aside for disaster recovery. If the
source machine dies, you can use zxfer locally to copy the latest back-
up to the disaster-recovery pool. You'll find examples of exactly this
in the zxfer(8) manual page, but here’s a common example, including
restoring properties. I'm restoring our backup of the host web5, into a

pool also called webs.

zxfer -deFPv -R remotepool/web5/ web5

Boot from the new web5 pool, and you have restored service!

More Zxfer Options

The zxfer program has a bunch of options to copy with annoying
situations.

If you have a complicated SSH setup, you might need to set some
client options in the zxfer user’s sHoMe/ . ssh/consig. Alternatively, you
could add these options in single quotes to -o and -T.

The -o and - flags can also be used to inject SSH options, as well
as command-line arguments. The additional parameters before the
user and host get fed to SSH, while any commands after the user and
host prefix the zfs(8) command. (You're better served configuring ZFS

dataset permissions than using sudo, however.)

-0 ‘-oPort=1022 -i /path/to/key/file \
replication@hotspare sudo’

The -r flag tells z£s receive to roll back any datasets that block
replication. If you've changed the replicated dataset, - blows away

those changes.

85

Chapter 4: Replication

You can have zxfer take a snapshot automatically before running.
It won’t remove old snapshots, so it’s not a proper snapshot rotation
regimen. It works for immediate backups, however, leaving the prob-
lem of cleaning up for another day. Add the -s to have the zxfer take
snapshots of every replicated dataset.

Finally, the -n flag triggers no-op mode. The zxfer program does
not transfer or delete any snapshots. Instead, it performs its analysis
and prints out what it would do if you hadn’t set -n.

Now that you've gone through replication, the issues of ZFS vol-

umes should seem easy in comparison. Or, maybe not...

86

Chapter 5: ZFS Volumes

A ZFS volume, or zvol, is a chunk of space backed by a ZFS pool
and used as a block device. A zvol is normally used like a file-backed
filesystem and exported to some other device by iSCSI. A zvol doesn’t
have the normal dataset files and directories and permissions, instead
relying on whatever uses the volume to provide the filesystem. Zvols
are commonly used as iSCSI targets for other network devices, giving
you access to ZFS-backed storage on operating systems with less flex-
ible filesystems. You can also use zvols as storage for virtual machines,
giving any guest operating systems access to ZFS’ integrity features
even if the client operating system can’'t use ZFS. Plus, you can repli-
cate zvols across the network.

We touched on zvols in FreeBSD Mastery: ZFS. This chapter expos-

es some common zvol pitfalls. But let’s start with zvol basics.

Creating, Destroying, and Manipulating ZFS Volumes

The -v flag tells z£s create that youre making a ZFS volume. Give the
desired size and the full path to the volume. Here we create a 2 TB zvol
on the pool vm. As this volume will be exported to a web server, we'll

name it wwwi.

zfs create -V 2T vm/wwwl
Zvols must be the children of a dataset. In this example, the zvol is
a child of the pool’s root dataset. You cannot create a zvol as a child of

a zvol. Our volume shows up in the list of datasets.

87

Chapter 5: ZFS Volumes

zfs 1ist -r vm

NAME USED AVAIL REFER MOUNTPOINT
vm 2.06T 563G 31.8K /vm

vm/dbl 2.06T 2.61T 15.9K -

A zvol immediately claims all of the space you assigned for it. We
created a 2 TB volume so it uses 2 TB of space plus some extra for
metadata. A brand-new volume hasn’t used this much space yet—it
hasn’t written a bunch of placeholder data to the pool or anything like
that. It’s only claimed that space via a refreservation.

Remove a volume with zfs destroy.

zfs destroy vm/wwwl

You can use most other ZFS commands on zvols, such as renaming
and moving. This volume is actually being used for data, so we give it a

more meaningful name.
zfs rename vm/wwwl vm/dbl

A zvol has many properties identical to other ZFS datasets, but not
all. Zvols have unique properties such as volmode and volblocksize,
while you can't set sharenfs or atime on a zvol.

Access a zvol through its device node. Most zvols have device
nodes in /dev/zvo1, in a directory named after their pool. The device
node for our sample zvol, vm/db1, would be /dev/zvo1/vm/db1. A zvol

might have other device nodes, depending on its mode.

Sparse Volumes

ZFS lets you create a ZFS volume larger than the space available to
stick it in, thus overcommitting on space. Reserving some space, but
not enough, is called thin provisioning. Thin provisioning is quite risky
on older filesystems, as you can easily provision more space than the
filesystem contains. You can easily expand a ZFS pool by adding more

hard drives, so it’s not as much of a risk here. The refreservation

88

Chapter 5: ZFS Volumes

property controls how much space a volume has reserved for it. Here
we create the 2 TB zvol dbs, but tell ZFS to reserve only 100 MB for it.

zfs create -V 2T -o refreservation=100M db/db5

Those of us who have a couple of empty SAS shelves and already
have plans for adding more hard drives might even use sparse volumes.
Sparse volumes use only the amount of space used on the volume. Use

the -s flag to create a sparse volume.
zfs create -V 2T -s db/db5

You might use smaller reservations if you're exporting iSCSI
volumes to other hosts and the client’s filesystem is less flexible than
ZFS. Growing an NTFS or UFS filesystem when the underlying disk
expands can cause long-term problems. Using a sparse volume means
you can tell the Windows host that an iSCSI device is a specific large
size, even if the underlying pool doesn’t have that much free space. The
zvol supporting it consumes the amount of space used by the files on
the device, plus any filesystem metadata.

This lets you create truly impressive volumes, if you're prepared to
support them. Here we create a two exabyte sparse volume. It doesn’t
matter that the pool beneath it is only 500 GB.

zfs create -V 2E -s db/db5

Use gpart show /dev/zvol/db/db5, and you'll see that this disk
device really is two exabytes. If you truly need two exabytes of space
on a single iSCSI volume, you can probably afford a flunky to unpack
and mount hard drives quickly enough to keep up with demand.

Overcommitting gets really ugly when you run out of space. Your
iSCSI clients might completely lose their cool when they’re informed
that these volumes are out of space even though the operating system
instances insist that they’re only 10 percent full. Many iSCSI stacks
cope gracefully with such problems. Others... do not.

89

Chapter 5: ZFS Volumes

If you don't have enough physical hardware capacity to add stor-
age, let ZFS volumes take up an amount of space equal to their size.

Don’t overcommit space.

Volume Mode

Before you go creating a volume for your application, consider its
intended use and what hosts are going to access it. FreeBSD’s default
ZFS settings assume that the system hosting the zvol completely con-
trols it. If you're using a zvol as a store for a virtual machine, however,
the guest operating system expects to have complete control of it.

This matters because FreeBSD’s GEOM layer autoconfigures storage.
Storage already configured by the host causes problems for virtualized
guests.

Control which system configures a volume using the volmode
property.

The default volmode, geom, means that the system where the vol-
ume exists controls it. If we create a zvol on host A, host A configures
and manages the volume through GEOM. In addition to the device
node for the ZFS volume, it gets device nodes in /dev/1abel and such.
Use the geom volmode when you're using a zvol locally.

The volmode dev means that this zvol is only available through the
single device node in /dev/zvo1. GEOM doesn’t try to autoconfigure
this volume. You can assign a label to the node, but FreeBSD won't
even try to see it. Use the dev volmode for virtual machine storage,
such as bhyve(8) hosts.

The volmode none means that this zvol doesn’t even get a device
node. You could clone this volume, snapshot it, or replicate it. This
mode is only useful for backups.

You can't change a live zvol’s mode—while you can change the val-

ue of the volmode property, the volume’s actual mode doesn’t change.

90

Chapter 5: ZFS Volumes

To make a volmode change take effect, export and re-import the vol-
ume. (You could also rename the volume, which is effectively export-
ing the volume and importing it under a different name.)

Create volumes with the desired mode by specifying a mode at the

command line or by setting a global default.

volmode at Command Line

As with any other property, use the -o flag to set the volmode when

creating a zvol.

zfs create -V 10G -o volmode=dev vm/swap0

This new zvol is accessible only by the device node

/dev/zvol/vm/swap0.

Default volmode

If a host most commonly needs to use a volmode other than geom, it
makes sense to change the default volmode. The sysctl vfs.zfs.vol.mode
controls the default volmode for new zvols.

The default value, 1, tells ZFS to use the volmode of geom. A set-
ting of 2 indicates the dev volmode, while 3 means a voimode of none.
Change the default with sysctl(8), or make the change permanently
effective at the next reboot with an /etc/sysct1.conf entry. Here’s an
/etc/sysctl.conf entry to make a virtualization server create new

zvols with a volmode of dev.

vfs.zfs.vol.mode=2

There’s no need to explicitly define the geom volmode.

Accessing zvols

You can’t z£s mount a zvol like you would a filesystem dataset. The
whole point of a zvol is that it’s a block device. To access it, you must
access the device node or its GEOM provider. The most common is

probably the device node.
91

Chapter 5: ZFS Volumes

A zvol gets a device node in /dev/zvo1, in a subdirectory named
after the pool. The device node for our sample zvol, vm/db1, would be
/dev/zvol/vm/dbl.

We might assign this zvol as storage for a bhyve virtual machine, in
which case wed probably let the virtual machine partition the disk.

For other uses we might want to partition it locally. Here we create
a GPT partition scheme on the zvol and make it one large partition,
with a GEOM label of dn1. We also assign it a GEOM label.

gpart create -s gpt /dev/zvol/vm/dbl
zvol/vm/dbl created

gpart add -t freebsd-ufs -1 dbl /dev/zvol/vm/dbl
zvol/vm/dblpl added

glabel create dbl /dev/zvol/vm/dbl
As this zvol was created with the default voimode, geom, it’s now
also accessible through the device node /dev/1abe1/db1.

Once the partition exists you can create a filesystem on it.

newfs -j /dev/zvol/vm/dbl
/dev/zvol/vm/dbl: 2097152.0MB (4294967296 sectors) block
size 32768, fragment size 4096

using 3350 cylinder groups of 626.09MB, 20035 blks,
80256 1inodes.

with soft updates

Wait—why would we possibly want to use UFS on a zvol?

Perhaps our iSCSI client or VM guest doesn’'t have enough re-
sources to run ZFS effectively. By giving the client a ZFS-backed
volume with a filesystem it can support, the client gets the additional
protections of ZFS even though the client can’t use ZFS directly. I en-
able UFS soft updates journaling with -5, however, because ZFS data
integrity and UFS filesystem journaling protect completely different

92

Chapter 5: ZFS Volumes

things. ZFS integrity checks make sure that the writes are safe, but
filesystem journaling verifies that all the writes are completed."

Now that the zvol has a filesystem, you can mount it.

mount /dev/gpt/dbl /media/
And voila! T have a UFS filesystem backed by ZFS, ready for use.

The most common use for zvols is as backing stores for virtual
machines. A serious quantity of virtual machines requires serious

hardware. Let’s take a look at that next.

11 Lucas has used a local USB flash drive as a gjournal(8) or
gcache(8) cache for an iSCSI device. It worked. If you find yourself in a
situation where that makes sense, however, leave the situation.

93

Chapter 6: Advanced Hardware

A typical server can only hold so many hard drives. As your storage
needs grow, you'll eventually encounter more advanced hardware than
you find on your typical home machine. This chapter covers enough of
the basics to ensure that you know what your storage vendor is trying

to sell you, and how to make use of these additional features.

SCSI Enclosure Services

The most common way to add storage is through a box specifically
designed to hold hard drives. The most common is the SCSI enclosure
(sometimes called a backplane). Attach a SCSI enclosure to a host with
a disk controller card.

SCSI enclosures have all sorts of hardware and features in them.
You'll often see SAS or SATA port multipliers, allowing you to connect
more than four drives to each port on the disk controller. You'll prob-
ably see disk bays or trays, probably hot-swappable. An enclosure has
fans, temperature sensors, power supplies, and more. An enclosure
might even have its own CPU, running a custom operating system
specifically designed to corral all of these features. Failed fans and
power supplies can bring down your storage.

SCSI enclosures have protocols to communicate with server oper-
ating systems. SCSI Enclosure Services, or SES, is the modern protocol
for monitoring and managing the storage subsystem of your server. It’s
the successor to the SCSI Accessed Fault-Tolerant Enclosure (SAF-TE)

protocol found in older hardware.
95

Chapter 6: Advanced Hardware

SES is usually integrated into the backplane of the hot-swap bays
or in the SAS Expander. SES provides a standard way to monitor and
locate your disk drives, and can also be used to monitor fans, lights,
and other devices.

FreeBSD supports SES with the ses(4) driver. FreeBSD 10.3 intro-
duced sesutil(8), letting you examine and control the ses(4) devices on

your system.

Examining your Enclosure

Sesutil(8) has many sub-functions. Start with sesutil map, which dis-

plays all of the devices in all of your enclosures.

sesutil map

ses0:
Enclosure Name: LSI SAS2X36 0Oel2
Enclosure ID: 500304801786b87f

The first entry for an enclosure is the enclosure device name (ses0).
If you have multiple controllers, a reboot might change the device
node, so don't rely on it to identify a specific enclosure. The enclosure
name is based on the hardware model, but the enclosure ID is unique
to this particular piece of hardware.

Each piece of monitored or controlled hardware in an enclosure is
an element. Each element is assigned a number. Element numbers do

not change at reboot. Here’s the first element of one of Jude’s arrays.

ETlement 0, Type: Array Device Slot
Status: Unsupported (0x00 0x00 0x00 0x00)
Description: Drive Slots

Element 0 has the type Array Device Slot, and a description of
Drive Slots. This is a parent element for all of the individual drive slots,

which follow.

96

Chapter 6: Advanced Hardware

Element 1, Type: Array Device Slot
Status: OK (0x01 O0x00 0x00 0x00)
Description: Slot 01
Device Names: da0O,pass4

Element 2, Type: Array Device Slot
Status: OK (0x01 O0x00 0x00 0x00)
Description: Slot 02
Device Names: dal,pass5

Here are a couple of actual hard drives. You'll see the FreeBSD
device names and the drive’s physical location. Presumably, your en-
closure has slot numbers indelibly printed on it—preferably, not on the
removable drive trays. When FreeBSD whines that disk dal is dead,
you can tell the on-site tech to go straight to Slot 02.

Other hardware appears after the drive bays.

Element 26, Type: Temperature Sensors
Status: OK (0x01 0x00 0x39 0x00)
Description: Temperature
Extra status:

- Temperature: 37 C

That’s a lot of words to say that the first thermometer says the en-

closure is at textbook body temperature.

Element 28, Type: Cooling

Status: OK (0x01 0x01 Oxfe 0x21)
Description: Fanl

Extra status:

- Speed: 5100 rpm

A cooling element is probably a fan, although someone’s probably
built a supercooled SCSI enclosure by now. The fan speed lets you
know the fan is still running. You might have to check the manual to

see exactly where Fanl is, though.

Element 34, Type: Voltage Sensor
Status: OK (0x01 Ox00 0x01 Oxf6)
Description: 5V
Extra status:

- Voltage: 5.02 V

97

Chapter 6: Advanced Hardware

The voltage sensors list each sensor’s expected voltage as a Descrip-
tion, then provide the actual voltage as an extra status.

SAS expanders get a little more complex. You'll see entries for SAS
expanders, and then all the components within the expander. There’s
very little to go wrong with a SAS expander, but some of the compo-

nents do offer a status.

Element 41, Type: SAS Expander

Status: Unsupported (0x00 0x00 0x00 0x00)
Description: SAS Expanders

Element 42, Type: SAS Expander

Status: OK (0x01 0x00 0x00 0x00)

Description: Primary Expander

Element 44, Type: SAS Connector

Status: OK (0x01 O0x11 Oxff 0x00)

Description: Upstream Connector (Primary)
Element 45, Type: SAS Connector

Status: OK (0x01 O0x11 Oxff 0x00)

Description: Downstream Connector 1 (Primary)
Element 46, Type: SAS Connector

Status: OK (0x01 Ox11 Oxff 0x00)

Description: Downstream Connector 2 (Primary)

Even the individual connectors show up

Element 47, Type: SAS Connector
Status: OK (0x01 0x20 0x00 0x00)
Description: Drive Connector 00

This is far more detail than most of us need. But checking the
status of your SAS expanders and controllers before you start replacing

hard drives en masse can save you a lot of suffering.

Enclosure Path

You can describe a disk’s location in an enclosure by how it’s connect-
ed. To reach a particular disk, the operating system must go to a cer-

tain enclosure, then to a particular bay in that enclosure. FreeBSD au-
tomatically generates device node directories based on this path. This

allows the sysadmin to identify the devices underlying a particular

98

Chapter 6: Advanced Hardware

chunk of hardware. This device path is a series of key-value pairs, sep-
arated by e symbols. For example, enclosure 500304801786b87d shows
up as enc@n500304801786b87d. Each path has four components: the
enclosure, the device type, the slot, and then the element description,

creating paths like the one below.

/dev/enc@n500304801786b87d/type@0/sTot@a/elmdesc@Slot_10/

This device node represents enclosure 500304801786b87d. The
leading N before the enclosure identifier shows that this is a Network
Addressing Authority (NAA) identifier, which is largely vestigial be-
cause everything here is an NAA identifier. The hexadecimal number
is the SAS address of the Addressed Logical Unit. How this number is
determined varies by vendors.

The type is a numeric device type. Disks are the only devices this
driver currently supports, but later FreeBSD versions might add sup-
port for other devices.

The slot is the drive bay. Slots are numbered in hexadecimal: slot a
is 10, bis 11, and so on. Slot 10 is actually 16.

The last component is the element description that appears when
you run sesutil map.

This directory contains symlinks to all of the device nodes associ-
ated with this slot. It even has label subdirectories. (You are managing
your disks with labels, right?)

#1s -1 /dev/enc@n500304801786b87d/type@0/slot@a/elmdesc@STot_10/
%cg;cvil—}(r—x 1 root wheel 15 Oct 5 23:27 da9@ -> ../../../../da9

dr-xr-xr-x 2 root wheel 512 Oct 5 23:27 gpt/
Trwxr-xr-x 1 root wheel 18 Oct 5 23:27 passl3@ -> ../../../../passl3

99

Chapter 6: Advanced Hardware

If slot 15 on your enclosure is making an unusual buzzing noise,
you can go into the enclosure-based device node and identify which

providers live there."

Keeping the lights on

The folks working on your hardware need all the help they can get.
Those slot numbers are probably printed in six-point type, and only
visible once you pull the drive out of the bay. And emergency drive
replacements always happen when the on-site tech is barely conscious.
Enclosure bays have locate lights specifically to provide your
remote hands an extra clue. Activate a bay’s locate light with
sesutil locate. Here, we activate the light on the bay housing drive
da2.

sesutil locate da2 on
The light either shines or blinks, depending on the manufacturer.

The sesutil map command shows if a slot’s locate light is on.

sesutil map

Element 3, Type: Array Device Slot

Status: OK (0x01 0x00 0x02 0x00)

Description: Slot 03

Device Names: da2,pass6

Extra status:

- LED=locate

You might need to activate a locate light in a bay without a disk—

say, to show the tech where to install a new hard drive. Use the SES
device node and the element number rather than the device node. The
slot number is often, but not always, the same as the element number.

Be careful.

12 All sysadmins appreciate knowing exactly how much panic is
appropriate at any given occasion.

100

Chapter 6: Advanced Hardware

Here we activate the locate light on element 3 on enclosure

/dev/sesO0.

sesutil locate -u /dev/sesO 3 on
To turn the locate light off, run the same command but replace on
with ... wait for it ... off.

Controlling Host Bus Adapters

FreeBSD includes several tools for managing non-RAID hard drive
controllers, normally called host bus adapters, or HBAs. For older
controllers you probably would rather not be using any more, you’ll
find mfiutil(8) and mptutil(8). FreeBSD 10.3 adds the mprutil(8) and
mpsutil(8) programs. Mprutil(8) is for the LSI Fusion-MPS 3 HBAs,
while mpsutil(8) is for LSI Fusion-MPS 2 HBAs. (As Avago purchased
LSI, you might also see these cards with Avago branding.)

Both programs behave identically, so we'll demonstrate with mp-
sutil(8).
Adapter Details

First, find the adapters connected to your system.

mpsutil show adapters

Device Name Chip Name Board Name Firmware
/dev/mps0 LSISAS2308 13000000
/dev/mpsl LSISAS2308 13000000

Now look at all of the devices attached. By default both tools access
the first device node, either /dev/mps0 or /dev/mpro. Access other HBA

devices with the -u flag and the device number.

101

Chapter 6: Advanced Hardware

mpsutil show devices

BT SAS Address Handle Parent Device Speed Enc Slot Wdt
500304801786b87f 0009 0001 SMP Target 6.0 0002 00 4
00 08 5000cca2325ddda9 000a 0009 SAS Target 6.0 0002 00 1
00 09 5000cca23257419d 000b 0009 SAS Target 6.0 0002 01 1
00 10 5000cca2325db3bd 000c 0009 SAS Target 6.0 0002 02 1
00 11 5000cca2325e028d 000d 0009 SAS Target 6.0 0002 03 1

Every line here is some device that responds to SCSI commands.
The majority of them are hard drives. Anything thats on the SCSI bus
is a target, including a hard drive. Really digging into this requires
understanding of SAS and SCSI, but we can glean useful information
without deep knowledge.

The first two columns show the device’s SCSI-style address. The
third gives the device’s SAS address. Much like an Ethernet card, every
SAS device has a unique physical address.

The Handle column indicates the name for the device, while the
Parent column shows what device this device is attached to. Look at
our first line. It has a handle of 0009. The second column has a handle
of 000a, but its parent is 0009. The device on line two is attached to the
device on line one.

The Device column shows what kind of device this is. A “SAS
Target” is a fancy way of saying “a SAS hard drive” An SMP (Serial
Attached Management Protocol) target is a SAS switch or expander.

The Speed column shows the connection speed in gigabytes per
second.

The Enc column shows the enclosure, while the Slot column shows
the slot or drive bay. Finally, the Wdt column shows the maximum

number of port connections on this device.

Display Enclosures

Use the show enclosures command to view the enclosures attached to

an HBA. Here we list the enclosures connected to /dev/mps1.

102

Chapter 6: Advanced Hardware

mpsutil -u 1 show enclosures

Slots Logical ID SEPHandle EncHandle Type
08 500605b009d018c0 0001 Direct Attached SGPIO
25 500304801786b87f 0022 0002 External SES-2
13 5003048001f7ab3f 0030 0003 External SES-2

You'll see the number of slots in the enclosure, the device’s handle
(if any), and the type of enclosure.
The Logical ID is a SAS address. You can map these to SAS ad-

dresses shown in sesutil(8) or other commands.

sas2ircu

If you are using an older version of FreeBSD that doesn’t have mpsuti1,
or need functionality that it doesn’t provide, LSI/Avago provides their
own proprietary tool, sas2ircu(8). Most of the features mpsutil(8) lacks
involve the controller’s built-in software RAID.!* Sas2ircu(8) also lets
you get information like the HBA’ firmware version. It’s available as a
FreeBSD port, sysutils/sas2ircu.

The sas2ircu(8) program expects at least two arguments: a control-
ler (device node) number and a command. Even if you have only one

controller, you must specify the controller number.

Viewing Hardware

To see the hardware attached to an HBA, use the display command.
Here we look at the devices attached to controller 0, /dev/mpso or
/dev/mprO.
sas2ircu 0 display

You'll get a bunch of copyright information, as well as helpful

notes like this:

Read configuration has been initiated for controller 0

Or, “I'm going to do as you asked now.”

13 You're not trying to use software RAID underneath ZFS, are
you? Don’'t make Jude come down there!

103

Chapter 6: Advanced Hardware

Controller type : SAS2308_2
BIOS version : 7.37.00.00
Firmware version : 19.00.00.00

Channel description : 1 Serial Attached SCSI

BIOS and firmware versions are useful if you have to troubleshoot
or use the manufacturer’s technical support. Once all this is past, we
get information on the actual hardware. Each hard drive gets an entry
like this.

Physical device information

Initiator at ID #0

Device is a Hard disk

Enclosure # 1

Slot # : 0

SAS Address : 4433221-1-0300-0000
State : Ready (RDY)

Size (in MB)/(in sectors) : 4769307/9767541167
Manufacturer : ATA

Model Number : TOSHIBA MDO4ACAS5
Firmware Revision : FP2A

Serial No : 55FGK5SUFS9A

GUID : N/A

Protocol : SATA

Drive Type : SATA_HDD

You see serial numbers, the drive type, if the drive is ready to use
or not, the size, and more.
Once you get through all of the hard drives, it'll spill out details

about the enclosure itself.

104

Chapter 6: Advanced Hardware

Enclosure# : 1
Logical ID : 500605b0:09cfc820
Numslots : 8
StartSlot : 0

It’s not quite everything about your enclosure—it won't tell you
which drive is responsible for that burning smell—but it provides

guidance.

sas2ircu Locate Lights

To turn the LED on a specific drive bay on or off, you’ll need the
controller number, the enclosure number, and the slot number. Get all

that from the display command.

sas2ircu <controller #> locate <enclosure#:slot#> on
Suppose we want to activate the LED on drive 8 on the enclo-
sure shown in the previous section. We were using controller 0, or
/dev/mps0. The display command shows each device’s enclosure
number and slot number. Drive 8 is in slot 7—remember, slots often
start numbering at zero. So to blink the LED for drive 8 (above) on

/dev/mps0, you would run.

sas2ircu 0 locate 1:7 on

Turn it off again when you’re done.

SAS Multipath

Systems with high availability requirements and many disks might
need SAS Multipath. The goal of multipath is to provide more than a
single path from the CPU to each disk. The other paths can be used for
load balancing or failover. Generally, multipath means connecting two

or more controllers to the backplane or storage shelf that contains the
disks.

105

Chapter 6: Advanced Hardware
Why Multipath?

When each disk can be reached via any of the controllers, the failure of
one controller or cable doesn't have to interrupt service. Additionally,
it can allow you to use the combined bandwidth of all of the control-
lers.

This concept can even be extended to provide full High Availabil-
ity. If you have a JBOD shelf full of disks, connect one of the two SAS
ports to the first server, and the other to the second server. Now both
machines have access to the disks. Use something like CARP, one of
the many heartbeat daemons, or some quorum-based high availability
service to allow these two servers to share an IP address.

With both machines having access to all the data, you can grace-
tully fail over services between the machines. This lets you do that OS
upgrade you have been putting off, without taking down the file server.

Take extra care to ensure that both systems don’t try to mount the
disks simultaneously. This is why the zpool import command checks
the Host ID, and refuses to import pools that look like they’re in use

by another system.

Multipath Modes

Multipath poses an interesting problem. If each of your disks has two
or more paths back to the CPU, the operating system sees each indi-

vidual disk multiple times, once via each controller. Now my 36-disk
system suddenly appears to have 72 disks.

The GEOM multipath module, gmultipath(8), takes these multiple
paths and provides a single logical storage device to the operating sys-
tem. Gmultipath(8) automatically chooses the best path to reach the
disk, so the upper storage layers don't have to worry about it.

GEOM multipath currently supports three modes of operation:

active/passive, active/active, and active/read.

106

Chapter 6: Advanced Hardware

Active/passive uses only one path at a time. When a path fails, the
system reissues the command on the next path. Specify active/passive
with -p.

Active/active mode uses all paths simultaneously to increase the
available bandwidth. Using all the paths can sometimes actually hurt
performance. The active/active mode has no idea what’s happening at
the filesystem or application level; it just sprays the instructions across
the different controllers. Commands that depend on each other might
have to wait for a response from the other controller before they are
able to proceed. Specify active/active mode with -a.

Active/read mode uses all paths for reads, but does all writes via
the primary path. This hybrid approach resolves some of the write
order problems that can be introduced by using active/active mode.
This mode may help saturate an SSD by providing more controller
bandwidth. On a regular spinning disk, random I/O performance may
actually be worse than active/passive. Specity active/read with -r.

A fourth mode, logical block, is being investigated, but is not
available yet. Logical block mode breaks the disk up into chunks of a
specified size, and always uses the same path to access that region. This
can avoid cache duplication on the controllers, as the same region of
the disk will not be accessed by both controllers. This can also solve
the write ordering issue and is expected to provide better performance

than active/active mode.

Identifying Disks

The annoying part of configuring multipath is identifying which de-
vices nodes (/dev/dax) represent different views of the same hardware.
You must solve this before you add any labels to the disks. One way

to solve this is to use camcontrol(8) on SAS devices to get the serial

number.

107

Chapter 6: Advanced Hardware

camcontrol inquiry da7 -S
1EHNLWRC

camcontrol inquiry da43 -S
1EHNLWRC

Compile a list of devices and their serial numbers, and find the
ones that match up.

Alternatively, you can use sesutil(8) to match up slot numbers.
We'll use Jude’s multipath system as an example. It has two enclosures:
the front one has 24 slots, and the rear one 12. The server has two disk
controllers.

The first controller’s first port is plugged into the front enclosure,
and gets called /dev/seso. The second port is plugged into the rear
enclosure, and becomes /dev/ses1.

The second controller’s first port is plugged into the front enclo-
sure, and gets assigned /dev/ses2. The second controller’s second
port gets attached to the rear enclosure’s second port, and becomes
/dev/ses3.

You have two enclosures. FreeBSD’s /dev/ses0 and /dev/ses2
both point to the front enclosure, while /dev/ses1 and /dev/ses3 both
point to the rear. Here I look at the front array’s element 8 from both

perspectives.

sesutil map -u /dev/ses0

Element 8, Type: Array Device Slot
Status: OK (0x01 0x00 0x00 0x00)
Description: Slot 08
Device Names: da7,passll

sesutil map -u /dev/ses2

Element 8, Type: Array Device Slot
Status: OK (0x01 0x00 0x00 0x00)
Description: Slot 08
Device Names: da43,pass49

108

Chapter 6: Advanced Hardware

This is the same disk. It has multiple device nodes. Disks da7 and
da43 are the same piece of hardware.
Any time you configure multipath, take notes and draw pictures.

Future You will thank you for good notes.'*

Configuring multipath

Gmultipath(8) needs a kernel module. Enable it at boot with a

/boot/loader.conf entry.

geom_multipath_load="YES”

The FreeBSD GEOM multipath modules have two configuration
modes: manual and automatic. Automatic mode is highly recom-
mended. It writes a label to the last sector of the disk, then reads that
label via each path to determine which device nodes are just additional
paths to the same disk. Use the gmultipath label to automatically con-
figure multipath.

We advise using sesutil(8) to get the list of drive device nodes
attached to one of your enclosures. Then use camcontrol(8) to get the
serial number of each of those drives. Combine the enclosure (f for
front) and slot number with the disk serial number to create a label on

the disk.
gmultipath Tabel f01-1EHNMOMC /dev/da0

You'll run this once for each drive in the enclosure, using the slot

number and serial number to create unique labels on each disk.
gmultipath 1abel f08-1EHNLWRC /dev/da7

Once the label exists, gmultipath(8) finds the label when it tastes
the other disks. When it finds the disk with the gmultipath label
f01-1IEHNMOMC, it says “A-ha! This is the same as disk /dev/da0” and

takes over.

14 If your notes are poor or nonexistent, Future You will curse
you, the day you were born, and your pets. Don’t enough people hate
you already?

109

Chapter 6: Advanced Hardware
Multipath Device Nodes

Now that you've mapped /dev/dz0 and /dev/da37 to the same device,
don’t use those device nodes. These device nodes represent accessing
the disk over a single path. Use the multipath device node instead. The
gmultipath(8) kernel module actually prevents you from accessing
those device nodes separately.

Multipath device nodes appear in /dev/multipath. Each disk is
named after the label you assigned. Build your ZFS array on top of
these labels, and you’ll get access to the disk even when you unplug a
cable.

If you really, really want to access the multiple device nodes of a
multipath device, set the sysctl kern.geom.multipath.exclusive to 0.

But we're telling you not to."

Manual Multipath Configuration

Maybe you like doing things the hard way. If you have a handy chart
of which device nodes represent the same physical device, you can use
that chart to create multipath nodes by hand. Use gmultipath create
to manually configure multipath devices. Provide a label and the two
disk devices. Here we create the multipath device mu1ti1, using device

nodes /dev/da7 and /dev/da43.
gmultipath create multil /dev/da7 /dev/da43
To destroy a manually created multipath device, use

gmultipath destroy and the label name.

gmultipath destroy multil
We really do recommend automatic configuration, though. And

labeling disks after their location and serial number.

15 We're telling you not to for your own good, and not just so we
can say “we told you so” later.

110

Chapter 6: Advanced Hardware
Viewing Multipath

After a reboot, FreeBSD’s GEOM stack tastes the disks, recognizes
the labels, and groups the disks together. See what it’s discovered with

gmultipath status.

gmultipath status
Name Status Components
multipath/fO00-1EHNMOMC OPTIMAL da0 (ACTIVE)
da36 (PASSIVE)
multipath/f01-1EHJZMBC OPTIMAL dal (ACTIVE)
da37 (PASSIVE)

Hu]tipath/f07—1EHNLWRC OPTIMAL da7 (ACTIVE)
da43 (PASSIVE)

After each path, you’ll see a note indicating whether each device

node is active or passive.

Changing Multipath Mode

We discussed the different multipath modes and their performance
impacts earlier. Gmultipath defaults to active/passive (-r) when you
label a disk. You can add the -2 to trigger active/active, or -r to switch
to active/read.

You can also use these flags to change the mode of an existing
multipath device. Use gnultipath configure, the flag for the desired
mode, and the drive’s gmultipath label. Here we switch the disk labeled
t07-1EHNLWRC to active/read mode.

gmultipath configure -R f07-1EHNLWRC
Did it work?

gmultipath status

Hu]tipath/f07—1EHNLWRC OPTIMAL da7 (ACTIVE)
da43 (READ)

In active/passive and active/read configurations, you can also use

the rotate command to switch which of the devices is active.

111

Chapter 6: Advanced Hardware

gmultipath rotate f07-1EHNLWRC
gmultipath status

.r;iu'l tipath/f07-1EHNLWRC OPTIMAL da7 (READ)
da43 (ACTIVE)
Now, even your SSDs can rotate. Enjoy!
Speaking of SSDs...

SSDs

Solid state disks, or SSDs, are significantly different than regular spin-
ning drives, and require tuning utterly different from traditional disks.
For one thing, they’re not even disks.

For a spinning hard drive to read two sectors that reside at dif-
ferent locations on the disk, the read head must position itself in the
right location, then wait for the spinning platter to come around to the
correct location, read the sector, then reposition itself to the second
sector, again wait for the platter to come around to the correct offset,
then read the second sector. This waiting is called the seek time.

An SSD has no moving parts. When you read data from two dif-
ferent parts of the drive, the drive has a seek time of zero. Most SSDs
get their relatively high read and write speeds from the fact that they
read and write to multiple cells concurrently. In order to keep multiple
memory cells busy, the operating system must supply the drive with a
queue of work to complete.

For a normal spinning drive, having a “deep” queue is bad. It
means the amount of time between when data is requested and when
it is written or returned is higher, because it must wait for the work
ahead of it in the queue to complete. By having a lower queue depth,
more important work items can get to the front of the queue first, cut-
ting in front of less important work that has been patiently waiting in

line's. To get the most out of an SSD, however, the queue depth must

16 Almost as skillfully as Lucas cuts in line at the gelato stand.
112

Chapter 6: Advanced Hardware

be high enough to make sure each cell gets assigned work. You cannot
get the performance numbers boasted on the box without a nice full
queue.

To get the most out of a high IOPS device like an SSD, the ZFS
VDEV queue depth tunable probably needs increasing. This helps
keep enough work in the queue to prevent the device from being idle.
See the “I/O Queues” section of Chapter 8.

Unlike a spinning disk, which has sectors that reside at fixed lo-
cations on the platter, SSDs are an array of immobile flash cells. SSDs
use an FTL" (Flash Translation Layer) to map the emulated locations
on disk to the particular flash cell containing stored data. While SSDs
claim to have the Logical Block Addresses used by spinning disks, the
FTL provides these LBAs. LBAs on an SSD bear even less relationship
to reality than they do on spinning disks.

Since flash cells wear out, almost all SSDs contain more storage
than they claim on the box. The drives spread data around the cells
in order to wear them more evenly. Once all of the space is occupied,
a garbage collector runs. The garbage collector finds cells that are no
longer referenced, or which the OS has used the TRIM (SATA) or UN-
MAP (SCSI) command to mark as unused, and clears them for further
use.

When you add SSDs or other devices that support TRIM to a ZFS
pool, FreeBSD TRIMs the entire partition or device by default, so that
it starts in a known state. This can cause a delay of tens of minutes or
even hours before the drive is usable. If your devices are new, or you
do not want to TRIM them when you add them to the pool, set the sy-

sctl vis.zfs.vdev.trim_on_init to 0 before adding the device to the pool.

17 Sadly, not a Faster Than Light engine.
113

Chapter 6: Advanced Hardware
NVMe

Non-Volatile Memory Express, or NV Me, is a newer technology de-
signed to further increase solid state storage speed. It's used for flash
drives, as well as other non-volatile memory like Intel’s 3D Xpoint.
NVMe itself is a physical interface specification, an alternative to
SATA or SCSI/SAS. You'll find NVMe cables and adapters that attach
via the PCI-e bus.

The slowest, most complicated, and most error-prone part of an
SSD is the FTL. Pretending to be as stupid as a 1980s-era spinning disk
is hard labor. NVMe improves performance on the same hardware
by dropping this clumsy pretense, instead adopting protocols better
suited for flash memory.

One of the biggest differences between NVMe devices and SSDs
is that NVMe devices have multiple queues, usually one read and one
write queue per CPU. Rather than trying to try to keep a single queue
full of enough work to occupy multiple flash cells, NVMe has mul-
tiple queues. NVMe queues can be kept relatively shallow, to allow
high-priority tasks to supersede other work. Spreading the load across
CPUs helps ensure even greater performance.

While most HDDs and SSDs interface with AHCI, which has a
single command queue of up to 64 commands per device, the NVMe
interface allows 65,536 queues, of 65,536 commands each. The NVMe
interface thus requires less locking while offering far greater parallel-
ism and therefore performance.

FreeBSD’s nvme(4) driver first appeared in FreeBSD 9.2. Much like
a hard drive device node, you can expect the first nvme(4) device to be

/dev/nvme0, /dev/nvmel, and so on.

114

Chapter 6: Advanced Hardware

NVMe devices natively support namespaces, allowing them to
be divided up into logical units, similar but different to partitioning.
Nvme(4) uses the characters #s to identify namespaces in the device
node. Unlike most everything else in computing, the NVM Express
specification starts numbering namespaces at 1 rather than 0. You’ll
thus get device nodes like /dev/nvmeons1, /dev/nvmeons2, and so on.

Only some newer Enterprise NVMe devices support managing the
namespaces. Most current devices have a single namespace that covers

the entire device.

Viewing NVMe Devices

Use nvmecontrol(8) to manage NVMe devices. Start by identi-
tying all of the NVMe hardware connected to the system with

nvmecontrol devlist.

nvmecontrol devlist
nvmeO: INTEL SSDPEDMD800G4
nvmeOnsl (763097MB)

This host has a single NVME, with a single namespace.
Use the nvmecontrol identify command to learn specific infor-

mation about the device.

nvmecontrol <identify nvme0
Controller Capabilities/Features

Vendor ID: 8086

Subsystem Vendor ID: 8086

Serial Number: CVFT4030004A800CGN
Model Number: INTEL SSDPEDMD800G4
Firmware Version: 8DV10151

This goes on for quite a bit, identifying all of the features this
NVMe supports (or doesn’t).

115

Chapter 6: Advanced Hardware

The identify command also works on the namespaces.

nvmecontrol identify nvmeOnsl

Size (in LBAs): 1562824368 (1490M)
Capacity (in LBAs): 1562824368 (1490M)
Utilization (in LBAs): 1562824368 (1490M)
Thin Provisioning: Not Supported
Number of LBA Formats: 7

Current LBA Format: LBA Format #00

LBA Format #00: Data Size: 512 Metadata Size: 0
LBA Format #01l: Data Size: 512 Metadata Size: 8
LBA Format #02: Data Size: 512 Metadata Size: 16
LBA Format #03: Data Size: 4096 Metadata Size: 0
LBA Format #04: Data Size: 4096 Metadata Size: 8
LBA Format #05: Data Size: 4096 Metadata Size: 64
LBA Format #06: Data Size: 4096 Metadata Size: 128
The LBA format allows you to specify the sector size, including
optional extra space for encryption or metadata. FreeBSD does not yet

let you reformat the drive with different sector sizes, however.

NVMe Performance

The nvmecontrol(8) utility also includes a performance testing tool,

nvmecontrol perftest. While you might want to test the performance

of a drive, it can demonstrate the advantages of multiple work queues.
Here we use the performance test to measure reading speed with

an increasing number of threads, each for 30 seconds. Each test uses

an increasingly large block sizes. The last column shows the actual

throughput for each number of threads, in megabytes per second.
Start with 512-byte blocks.

for threads in 1 2 4 8 16 32 64; do nvmecontrol perftest \
-n $threads -o read -s 512 -t 30 nvmeOnsl;done

Threads: 1 Size: 512 READ Time: 30 IO/s: 215377 MB/s: 105
Threads: 2 Size: 512 READ Time: 30 IO/s: 309203 MB/s: 150
Threads: 4 Size: 512 READ Time: 30 IO/s: 509559 MB/s: 248
Threads: 8 Size: 512 READ Time: 30 IO/s: 534976 MB/s: 261
Threads: 16 Size: 512 READ Time: 30 IO/s: 535131 MB/s: 261
Threads: 32 Size: 512 READ Time: 30 IO/s: 534682 MB/s: 261
Threads: 64 Size: 512 READ Time: 30 IO/s: 533701 MB/s: 260

116

Chapter 6: Advanced Hardware

With one thread, we can read 105 MB/s. With eight or more, we

hit 260 MB/s. That’s probably the maximum throughput with this

block size on this device.
Here’s the same test using 4096-byte (4 KB) reads.

for threads in 1 2 4 8 16 32 64; do nvmecontrol perftest \
-n $threads -o read -s 4096 -t 30

1 Size:

2 Size:

4 Size:

8 Size:

16 Size:
32 Size:
64 Size:

Threads:
Threads:
Threads:
Threads:
Threads:
Threads:
Threads:

4096
4096
4096
4096
4096
4096
4096

READ
READ
READ
READ
READ
READ
READ

Time:
Time:
Time:
Time:
Time:
Time:
Time:

30
30
30
30
30
30
30

nvmeOns1;done

I0/s:
I0/s:
I0/s:
I0/s:
I0/s:
I0/s:
I0/s:

171261
308112
424894
521704
543984
543376
542464

MB/s:
MB/s:
MB/s:
MB/s:
MB/s:
MB/s:
MB/s:

668
1203
1659
2037
2124
2122
2119

Even at one thread, we blow away the performance possible with
512-byte blocks. Eight threads can do about 2,000 MB/s, while at 16
and more we get about 2120 MB/s. With a bit more testing, you could

figure out that somewhere around nine or ten threads maximizes per-

formance with this block size.

Now forget these puny mortal block sizes, and jump up to 128 KB

blocks.

Threads:
Threads:
Threads:
Threads:
Threads:
Threads:
Threads:

1 Size:
2 Size:
4 Size:
8 Size:
16 Size:
32 Size:
64 Size:

131072
131072
131072
131072
131072
131072
131072

READ
READ
READ
READ
READ
READ
READ

Time:
Time:
Time:
Time:
Time:
Time:
Time:

I0/s:
I0/s:
I0/s:
I0/s:
I0/s:
I0/s:
I0/s:

21770
25780
25780
25758
25706
25718
25710

MB/s:
MB/s:
MB/s:
MB/s:
MB/s:
MB/s:
MB/s:

Two threads maximizes throughput with these large blocks.
A mere 3200 MB/s might not sound fast—it’s 3.2 GB/s. But SATA
measures performance in bits, not bytes. Once you get rid of the over-
head, SATA 3’s 6 GB/s maxes out at about 550 MB/s.

117

2721
3222
3222
3219
3213
3214
3213

Chapter 6: Advanced Hardware
NVMe GEOM Providers and Booting

Once an NVMe device has a namespace, the nvd(4) driver comes into
play. This is the device that is actually a GEOM provider, and can be
used for storing data with ZFS. You'll see device nodes like /dev,/nvdo,
/dev/nvdl, and so on.

If you plan to use the NVMe device as a boot drive you must
partition the boot /dev/nvd device, probably with GPT. If you're not
booting from the device, you could skip the partition table and write
the filesystem directly on the device node.

Traditional BIOS and CSM modules only understand traditional
disks and things that lie to look like them. The whole point of NVMe
devices is that they refuse to lie, and do not emulate a traditional hard
drive.

Booting from an NVMe device requires booting with UEFI.
FreeBSD gained the ability to boot root-on-ZFS via EFI in FreeBSD
10.3.

Zfsd

FreeBSD 11.0, expected to be released in July 2016, will include the
first version of zfsd(8). This daemon, specific to FreeBSD, offers some
of the functionality provided by Solaris’ Service Management Facility
(SMF). Zfsd(8) receives notifications about faults that the kernel can-
not handle itself, and resolves them.

The daemon listens for devctl(4) events such as I/O errors or disk
attach and removal events, then responds to them by activating and
deactivating hot spares, or onlining and offlining individual devices in
the pool.

Zfsd(8) does not require any configuration. It makes all of its de-
cisions based on your pool configuration. In the first version of z£sq,

only the autoreplace pool property has any effect.

118

Chapter 6: Advanced Hardware

If a device removal notification is received for a disk that is a mem-
ber of a VDEV, z£sd immediately activates a hot spare in the pool and
starts resilvering.

When a new GEOM device appears, zfsd first checks for a ZFS
label. If the disk has a label that indicates it was previously a member
of a pool, it is reattached. Once it finishes resilvering, any hot spares
that were temporarily replacing that device are deactivated and re-
turned to the list of available spares.

If the newly arrived device has no ZFS label, but its physi-
cal path matches that of a missing member of a VDEV, and the
pool has the autoreplace pool property set, then the new device
is used to replace the missing one. In newer FreeBSD versions

the physical path might be blank, or it might be the SES path, like
/dev/enc@n500304801786b87d/type@0/slot@l/elmdesc@Slot 01/gpt/
£01-1EHJZMBC.

Once resilvering completes, z£sd deactivates any hot spares that
were temporarily replacing that device. Deactivated devices get re-
turned to the list of available spares.

If a VDEV becomes degraded or faulted, z£sd attempts to resolve
the issue by activating a hot spare.

If an individual device generates more than 50 I/O or checksum
errors in a 60-second period, z£sd marks the device as degraded and
activates a hot spare. ZFS continues to use the degraded device while
the pool resilvers. Once the pool finishes resilvering, z£sd removes the
failing device from the pool.

If a new hot spare is added, or returned, to the pool, z£sd activates
the spare if it is needed to replace another device.

When a resilver operation completes, zfsd attempts to deactivate
any hot spares that are no longer needed, so that they are available to

replace further failures should they occur.

119

Chapter 6: Advanced Hardware

Zfsd(8) also listens for “physical path change” events, to be notified
when the path to a newly arriving disk is set. This can happen slightly
later than when the disk insert event itself arrives. When the physi-
cal path is updated, and the pool’s autoreplace property is set, zfsd
attempts to replace any missing disk with the same physical path.

When you swap out a failed disk, and the CAM subsystem notes
that the new disk is in the same slot, with the same path, zfsd auto-
matically initiates the replace operation and restores the pool back to
a healthy state.

Moving a disk from one slot to another works exactly like remov-
ing a disk and plugging a disk back in. The kernel marks an absent
disk as removed. When you put the disk back in, the kernel sees the
ZFS label on the disk, identifies which pool it belongs to, and automat-
ically reactivates it with zpoo1 online. The pool metadata gets updat-
ed with the physical path.

Now that we've talked some about how to use advanced hardware,

let’s look at advanced uses of the various ZFS caches.

120

Chapter 7: Caches

Like any other filesystem, ZFS uses in-memory caches to enhance
performance. Unlike most other filesystems, though, the sysadmin
can tweak these caches to adjust system behavior. ZFS caches a list

of system pools in the zpoo1.cache file. It can use cache devices for
reading and writing. The most visible cache, though, is ZFS’s Adaptive

Replacement Cache.

Adaptive Replacement Cache

Calling data from memory is much faster than accessing files from
disk. Unix-like operating systems normally retain copies of the most
recently accessed files in an in-memory buffer cache. ZFS uses a more
sophisticated and more effective type of cache, the Adaptive Replace-
ment Cache, or ARC. Understanding the ARC starts with understand-
ing the buffer cache.

Traditional Buffer Cache

The buffer cache chooses data to cache based on the Least Recently
Used, or LRU, algorithm. The LRU is a list, stored by the last time a
chunk of data was accessed. Whenever an object is used, it moves to
the top of the list. When the cache fills up, the system drops items
from the bottom of the list until there’s enough room to insert new
items at the top of the list.

Buffer caches work well enough to provide performance gains, but

in certain situations the LRU method causes undesirable behavior.

121

Chapter 7: Caches

Consider a nightly backup. The backup program scans the entire hard
drive, looking for files modified since the last backup. Running this
scan adds each file on the system to the top of the list, letting files
that were just scanned fall off the bottom. By the end of the backup,
the buffer cache is full of data that nobody cares about. Meanwhile,
the mission-critical database has been shoved entirely to disk. This is
called cache thrashing.

The ARC avoids these problems.

ARC Design

The ARC also caches files that have been recently read from disk.
Instead of a single list, the ARC has two pairs of lists. One is the Most
Recently Used, or MRU, list, tracking accessed filesystem blocks much
like the buffer cache. The second is the Most Frequently Used (MFU)
list, tracking filesystem blocks that get used regularly.

The addition of the MFU list reduces the impact of cache-thrash-
ing processes like the hypothetical backup job. While scanning every
file on the system purges the MRU list, it won't affect the MFU list.
Scanning a block once, for backup purposes, is not “frequent.” The
most frequently used files remain cached in memory. Running your
backup still impacts disk I/O, reducing write performance, but the
system serves the most popular files from the copy cached in memory.

Each list is paired with a ghost list, which contains the information
about blocks that have been evicted from the list. When the MRU or
MFU lists fill up, the blocks at the bottom of the list fall off. By track-
ing these blocks dropped from the caches, the ARC can prevent a
block from constantly cycling in and out of the cache. The ARC can
also decide if a block is now being used frequently enough to warrant
entry onto the MFU list.

122

Chapter 7: Caches

In almost all cases, the ARC is self-adjusting and a sysadmin’s
manual tuning can only impair performance. It’s possible that your
particular application might need special handling. Understand how
the ARC behaves before you start fiddling with it, however.

ARC Memory Use

The ARC is designed to be both greedy and generous. If the system has
free memory, and the ARC thinks it might possibly benefit from it, the
ARC claims the memory. Every time the system reads something from
disk, the ARC caches the file in memory. The ARC continues caching
files until the system is using all of its memory.

FreeBSD reserves 1 GB of RAM for the kernel and application
programs. All the rest of the system memory is fair game for the ARC.
On a long-running system with a lot of storage and not a lot of memo-
ry, it’s not surprising to see the ARC consume a majority of the system
memory.

The ARC has a very low priority for memory requests, however.

If an application requests memory, but the system doesn’t have free
memory, the kernel shrinks the ARC to give the application its re-
quested memory. The process of returning memory from the ARC
to the system as free member is not instantaneous; it can take a few
seconds.

So: if the memory is free, the ARC will use it. If something needs
that memory, the ARC gives it back. Modern servers have a lot of
memory. They might as well use it for something. The old saying “Free
RAM is wasted RAM” still holds true.

The easiest way to check the size of the ARC is through top(1).
Here’s a slice of top output from a fileserver with 32 GB of RAM and
20 TB of disk.

123

Chapter 7: Caches

Mem: 168M Active, 116M Inact, 24G Wired, 1168K Cache,
449M Buf, 7052M Free

ARC: 23G Total, 15G MFU, 7398M MRU, 18K Anon,
412M Header, 88M Other

The Mem line appears in top output on almost all Unix-like sys-
tems, and offers details into how much memory the system is using for
various types of tasks. While the ARC is a subset of wired memory, the
ARC appears separately so it can offer more detail.

The first entry, Total, shows how much RAM the ARC is using.
This ARC on this system has claimed a total of 23 GB.

Files that ZFS accesses often appear in the MFU space. This shows
15 GB of MFU data in the ARC.

The MRU entry shows 7,398 MB used to store the most recently
accessed files.

Data moving from one queue to another, or async writes waiting to
be flushed to disk, appear in the Anon space. Memory listed as Header
is used for metadata about the ARC itself. This 23 GB of ARC needs
412 MB of metadata. Other includes things like runtime-only metada-
ta used to help the ARC find stuff in its cache. Strictly speaking, it's not
part of the cache itself, but supporting infrastructure.

While the ARC is greedy for RAM, note that this long-running
system still has several gigabytes of free memory. The disks are over-
whelmingly full, but the amount of data demanded by real users is
comparatively small. Anyone whos managed a file server recognizes
this pattern—every business’ accounting department has one master
spreadsheet, plus 15 bajillion slightly different copies of that spread-
sheet from various dates, all of which are vital and must be retained for
posterity eternally. If the ARC is using most of the system’s memory;,
it's because a process accessed a file. The ARC doesn't go hunting for

excuses to suck up RAM.

124

Chapter 7: Caches
Zfs-stats

FreeBSD exposes ZFS performance, settings, and metrics through a
variety of sysctls in vfs.zfs and kstat.zfs. These values usually mean
very little by themselves, but are illuminating when compared to each
other. Rather than parsing those values directly, we highly recommend
using the zfs-stats package to examine the ARC.

Use zfs-stats -a to get basic information about the ARC, such as
its current size and the size of each queue within the ARC. Here are in-

teresting snippets from a zfs-stats report from one of Lucas’ systems.

zfs-stats -A

ARC Summary: (HEALTHY)
Memory Throttle Count: 0

The Memory Throttle Count tells how many times the ARC has
been shrunk to return memory to the kernel for use by another pro-
cess. If the memory throttle count is high, you might consider lower-
ing the limit on the ARC size to ensure there is enough free memory
for your other processes. ARC memory throttling does not mean that
a system must have more memory, though, merely that it would make

use of additional memory.

XRC Size: 36.22% 10.89 GiB

Target Size: (Adaptive) 100.00% 30.07 GiB
Min Size (Hard Limit): 12.50% 3.76 GiB
Max Size (High Water): 8:1 30.07 GiB

This particular ARC is at 36.22% of its maximum size, or 10.89 GB.
It’s configured for a maximum size is 30.07 GB. The minimum is 3.76
GB.

125

Chapter 7: Caches

KRC Size Breakdown:
Recently Used Cache Size: 50.00% 15.03 GiB
Frequently Used Cache Size: 50.00% 15.03 GiB

The ARC has evenly divided memory allocated for the MRU and
MFU caches.

The ARC efficiency report, given by zfs-stats -E, is more inter-
esting than the general report. Here are the most interesting snippets

of that output from a different server.

zfs-stats -E

XRC Efficiency: 78.40m
Cache Hit Ratio: 97.76% 76.65m
Cache Miss Ratio: 2.24% 1.75m

Actual Hit Ratio: 97.76% 76.65m

ZFS dedicates gobs of memory to filesystem caching. The top of
this report shows us how much benefit we get out of this. The Cache
Hit Ratio says what percent of disk read requests were served from the
ARC rather than by going to disk. In this case, 97.76% of all read re-
quests on this machine were served out of memory. The number after
the percentage is the raw number of requests. This host served 76.65
million disk requests out of the ARC.

Next, zfs-stats shows which cache a cached file came from.

CACHE HITS BY CACHE LIST:

Most Recently Used: 3.35% 2.57m
Most Frequently Used: 96.65% 74.08m
Most Recently Used Ghost: 0.04% 28.81k

Most Frequently Used Ghost: 0.08% 63.26k

The MRU cache, which resembles the traditional buffer cache,
served 3.35% of all the files served from the ARC. 96.65% of all files
came from the MFU cache. There’s certainly some overlap between

these queues—in the absence of an MFU cache, some of the frequently

126

Chapter 7: Caches

accessed files would appear in the MRU cache. But it’s a nice illustra-
tion of why the ARC uses an MFU cache.

Ghosts hold the lists of data that was recently cached, but was dis-
carded due to memory pressure or other limits. Would adding more
memory and increasing the ARC size improve our cache hit rates?
With 0.04% and 0.08% hits on the ghost lists, adding more memory
wouldn’t really improve caching. This host’s ARC is only 36% full, so
items are not being evicted. Those tiny percentages might be tens of
thousands of requests, but compared to the millions of requests it’s
served, that’s almost nothing. Additional memory might improve oth-
er processes, but not the ARC.

Next we see the type of data pulled from the ARC.

CACHE HITS BY DATA TYPE:

Demand Data: 97.15% 74.46m
Prefetch Data: 0.00% 0
Demand Metadata: 2.85% 2.19m
Prefetch Metadata: 0.00% 0

Data is the content of files, while metadata is everything about the
files. We discuss prefetching in Chapter 8, but whatever prefetching is,
it clearly doesn’t come into play here.

On the flip side of the coin, we see which sorts of data weren’t
cached.

CACHE MISSES BY DATA TYPE:

Demand Data: 31.72% 556.25k
Prefetch Data: 0.00% 0
Demand Metadata: 68.28% 1.20m
Prefetch Metadata: 0.00% 19

How many of a system’s requests should get served out of the
ARC? That depends entirely on the workload. A web server that serves
the same data over and over again could expect high cache hit rates.

Expect lower cache hit rates on servers where clients access many

127

Chapter 7: Caches

different files. If your pool has terabytes of data in millions of files, but
clients never access the same data file twice, caching files in memory

will not boost performance.

Modifying the ARC

The ZFS ARC manages itself in the overwhelming majority of cases.
In most cases where the ARC cannot auto-tune itself, performance
problems are best solved by adding hardware. Sometimes, though, ad-
justing ZFS’ memory or performance can buy you time until you can
receive and install new hardware. On rare occasion, adjusting the ARC
is the proper response for a specific application.

You can tweak the ARC by setting upper and lower boundaries on
how much memory it can use, as well as controlling what, when, and
why the ARC caches data.

Restricting ARC Size

A default FreeBSD install sets aside 1 GB of RAM for the kernel and
operating programs, permitting ZFS to absorb the rest in the ARC if
that’s what the system performance demands. You can change this by
reserving a minimum amount of memory for the ARC and/or setting
a hard limit on how much memory the ARC can take.

The ARC settings are all given in bytes. Today, we manage memory
in gigabytes. To set a value for ZFS, multiply the desired number of
gigabytes by 1024°.

The ARC surrenders memory readily upon request, but freeing
memory doesn’t happen instantaneously. Releasing memory from the
ARC and allocating it to another process unquestionably takes longer
than allocating free memory to that same process. On a host with a
very large ARC, dumping gigabytes of objects from the cache might

take a measurable fraction of a second.

128

Chapter 7: Caches

You might decide to limit the amount of memory the ARC can
use, freeing system memory for applications. Use the boot-time
tunable vfs.zfs.arc_max to set this. By default, FreeBSD sets this to
the total memory minus 1 GB. Here we set an upper limit of 20 GB in

/boot/loader.conf.

vfs.zfs.arc_max="21474836480"

The maximum ARC size is not a hard limit, but rather more of a
high-water mark. When the ARC hits this size, ZFS begins hurriedly
reducing the cache size. The least important items get added to the
ghost queues and dumped. If youre monitoring the ARC size, you
might see memory usage wobble around vfs.zfs.arc_max when the
system experiences memory pressure.

It’s also possible that an application could use the ARC’s generosity
against it, and squeeze it out of existence. The default minimum size
of the ARC is one-eighth of the maximum size. (Strictly speaking,
the minimum ARC size is half of the maximum amount of memory
usable for metadata in the ARC, which is one quarter of the max-
imum ARC size.) Use the boot-time tunable vfs.zfs.arc_min to set
a minimum ARC size. Like the maximum size, the minimum size
is expressed in bytes. Here I set the minimum ARC size to 4 GB in

/boot/loader.conf.

vfs.zfs.arc_min="4294967296"

Lucas normally sets upper and lower limits on ARC size only when
he’s gotten sick of explaining how the ARC works to non-technical
managers. “Yes, PostgreSQL can use a lot of memory. The ARC uses
memory. But the ARC only caches stuft that PostgreSQL calls for, and

PostgreSQL must be up and running to do that, so it’s not a problem.”*®

18 If you must have this conversation again, do try to not add
“Aaargh, how did you possibly earn your air today?” It never goes over
well.

129

Chapter 7: Caches

FreeBSD 10.2 and later can specify how much memory the ARC
should try to leave free for the use of other processes, with the sysctl
vis.zfs.arc_free_target. The value is different than the others in this
section because it is specified in pages, not bytes. A page is 4096 bytes
of memory, so a value of 2 GB would be expressed as 524288 (2 * 1024’
/ 4096). When the amount of free memory drops below this value,
the kernel memory reaper runs. The reaper performs two functions: it
adjusts the size of the ARC to ensure there is enough free memory, and
it defragments the KMEM Arena. While ZFS has been rapidly allocat-
ing and freeing bits of memory as files move in and out of the ARC,
it has littered bits all over the different segments of kernel memory.
That memory is not returned to free until all allocations in an arena
are freed. This manifests itself as the amount of wired memory being
significantly higher than the size of the ARC plus the expected other
wired pages like the networking stack. Unlike the previous tunables,
vis.zfs.arc_free_target can be adjusted on a running system and takes
immediate effect.

Metadata and the ARC

Filesystem metadata includes all the stuff about files, except the files
themselves: directories, permissions, ownership, size, properties, and
more. The ARC caches all of this information exactly as it caches file
contents. Accessing a file’s contents requires accessing the file’s meta-
data, after all.

By default, the ARC uses up to one-fourth of its maximum size to
cache this metadata. While this is almost always sufficient, if a filesys-
tem has a whole bunch of tiny files, you might need to expand this
limit. The boot-time tunable vfs.zfs.arc_meta_limit lets you config-
ure a specific limit for metadata that can be either above or below
the default. Here we hard-code the ARC’s metadata cache to 8 GB in

/boot/loader.conf.

130

Chapter 7: Caches
vfs.zfs.arc_meta_Timit="8589934592"

If z£s-stats -E shows that youre drawing much more data than
metadata out of the ARC, you might consider increasing the metada-
ta limit and see if performance improves. Remember that by default,
the minimum size of the ARC is half of the amount that can be used
for metadata. Also, cached metadata cannot use more space than the
entire ARC.

Datasets and the ARC

Some data has regular access patterns that make the ARC irrelevant—
by the time any file is accessed a second time, it would have long since
been expired from the MRU and MFU list. This typically only hap-
pens when a dataset contains millions of files and when you can easily
predict their usage. Telling the ARC to not cache these files frees up
memory to cache files that might benefit.

The ZFS property primarycache defines what parts of a dataset’s in-
formation should go into the ARC. The default, all, means to cache file
data and metadata alike.

Setting primarycache to metadata tells the ARC to only cache each
file’s metadata, not the contents. You might find this useful for direc-
tories that contain large numbers of files. Without metadata caching,
running Is(1) on a large directory might take several minutes as ZFS
reads the disks and assembles the information. Caching only metadata
disables ZFS prefetching, which might hurt performance more than
metadata-only caching helps.

Setting primarycache to none tells the ARC to not cache anything
from this dataset. You can’t prefetch without a cache, but if a dataset
isn't cached, performance clearly isn’t a concern.

For example, one of Lucas’ servers has a multi-terabyte dataset

with innumerable files created over the last 15 years. On the rare

131

Chapter 7: Caches

occasions that these files are accessed, they’re searched in order. The
server doesn't have nearly enough memory to effectively cache the
contents of all these files. Telling the ARC to cache metadata on this
dataset means that Is(1) and such still work briskly, but we won’t use-
lessly clutter this machine’s ARC.

You must unmount and remount a dataset before changes to the

primarycache property take effect.

zfs set primarycache=metadata cdr/cdr
zfs unmount cdr/cdr
zfs mount cdr/cdr

The ARC is now free for useful work, such as caching the tempo-
rary files created by analyzing these records.

Unmounting a dataset removes all of the cached information about
that dataset from both the ARC and the L2ARC.

Level 2 ARC

The ARC constantly prunes itself to keep within its permitted size.
Files that have not been referenced in a long time fall off the MRU list.
Normally, items dropped off the ARC evaporate—while they’re men-
tioned on the ghost lists, so the MFU queue can recognize them if they
come by again, the system relies on the on-disk copy of the file.

The Level 2 ARC, or L2ARC, is a secondary read cache. The
L2ARC catches items that fall off of the ARC. By using a small, fast,
high-endurance disk to cache ARC data you can simultaneously re-
duce read load on your system’s main storage and improve read per-
formance. The zpoo1 (8) command calls an L2ZARC a cache device.

While the L2ZARC is written to disk, the data in it does not survive
a reboot. While everything is safely there, the indexes to that data are
destroyed. Even if those indexes were available, the pools could have
been modified on a different machine before rebooting the system.

ZFS cannot trust the information on the cache device.

132

Chapter 7: Caches

As of early 2016, there’s a nearly complete implementation of a
persistent L2ZARC. With a persistent L2ZARC, the system would reload
the prior LZARC and load everything back into memory. While this
feature might never reach wide distribution, heavy L2ZARC users might
check for it in the future.

Using an L2ARC makes sense when you have multiple users, virtu-
al machines, or applications accessing a single data set. If your work-
ing set is larger than the amount of RAM you can afford, your second
choice is L2ZARC based on SSD or NVMe devices. For most applica-
tions, such as the typical home or enterprise NAS, an L2ARC will not
increase performance. An L2ARC can even hurt performance through

memory consumption.

L2ARC Memory Use

While the L2ZARC contains a whole bunch of cached data and metada-
ta, the index to that data resides within the ARC. As a general rule of
thumb, each gigabyte of L2ZARC requires about 25 MB of ARC. (This
varies with the sector size of the disk, the recordsize property, and
other dataset characteristics, which makes the actual size notorious-
ly difficult to calculate.) It’s fairly sane to assume that one terabyte of
L2ARG, fully utilized, will devour about 25 GB of ARC.

Most L2ARCs are not nearly a terabyte—at least, not yet. SSDs of
sufficiently high endurance to make them suitable for read caches are
still expensive enough that most of us don’t have them lying around.
Those of you planning massive storage arrays with more than, say, 40

drives, should remember this.

L2ARC Caching

The L2ARC can only cache data that falls off the ARC. Data that is
never in the ARC cannot appear in the L2ZARC.

133

Chapter 7: Caches

Suppose you've completely disabled ARC caching for all datasets
on a particular pool by setting the primarycache property to none.
Adding an L2ARC to this pool will not improve ZFS performance.
There is no cached data to fall down to the L2ARC.

You might think it makes sense to have a dataset where the ARC
contains the metadata, while the L2ZARC caches the actual file data.
Lucas’ multi-terabyte cdr/cdr dataset from the previous section might
seem a great candidate for this. And once he sets primarycache to

metadata, it sure looks like that’s what will happen.

zfs get primarycache,secondarycache zroot/cdr

NAME PROPERTY VALUE SOURCE
zroot/cdr primarycache metadata Tlocal
zroot/cdr secondarycache all default

The problem is that the ARC only caches metadata, so the only
stuft it can push to the L2ZARC is metadata. The L2ZARC can contain
only what’s in the ARC, or a subset thereof.

By default the ARC caches everything the system accesses, so the
L2ARC does the same.

You can control how each dataset uses the L2ZARC with the
secondarycache property. As with the primarycache property,
secondarycache can be set to all, metadata, or none. The default is all,
meaning that data that’s almost important enough for the primary
ARC gets pushed off onto the L2ZARC.

Streaming Files

Most of the time needed to read a file is spent moving the disk heads
into position over the platter. Once positioned, the heads read data
pretty quickly. This is called streaming. While serving large files out of
memory would be faster than reading them from disk, on most sys-

tems the multiple disks of the main pool are faster than the one or two

134

Chapter 7: Caches

disks of the L2ARC. In this case, having the L2ZARC cache streaming
files doesn’t make sense, so it’s disabled by default.

If you have an L2ARC that’s faster than your main pool, you
might want to enable large file caching. The boot-time tunable
vfs.zfs.12arc_noprefetch controls caching of streaming files. The default
setting, I, disables caching streaming files. Set this to 0 to enable cach-

ing, as in this example from /boot/10ader. cont.

vfs.zfs.12arc_noprefetch=0
This tunable only takes effect when importing the pool. FreeBSD
imports pools before looking at /etc/sysctl.conf, so this must be set

in the boot loader.

L2ARC Write Speed

SSDs are not as robust as spinning disks. Even if you contact a spe-
cialist vendor (such as iX Systems) who's very familiar with ZFS and
knows precisely the best disk to use for an L2ZARC, you can hammer
on an SSD only so much before it dies. While ZFS gracefully manages
a dying or dead L2ARC, constant disk death is expensive, time con-
suming, and annoying to the sysadmin. ZFS implements a couple of
write throttles on the L2ZARC to extend disk life.

Like the main ARC, the L2ZARC uses bytes in its configuration.
Most L2ARC settings make the most sense in megabytes. Multiply
your desired values by 10242,

During normal operating, ZFS only writes 8 MB per second to
each L2ARC device. This avoids wearing out the SSD device, and also
helps avoid cache thrashing. (Cache thrashing is writing a lot of data to
the cache that just ends up getting overwritten with newer data before
it’s used.) If you need a system’s L2ZARC to handle more data, you can
boost this with the sysctl vfs.zfs.12arc_write_max. Don’t turn this up so

high that you make reads slow.

135

Chapter 7: Caches

When a system first boots, the LZARC is empty. An empty L2ARC
doesn’t do much good. ZFS does a Turbo Warmup Phase after system
boot where it writes extra data to the L2ZARC, over and above the limit
set by vfs.zfs.|2arc_write_max. Turbo Warmup Phase continues until
the ARC drops the first item from the L2ZARC. The length of time this
takes depends entirely on the system. By default, ZFS can write an
extra 8 MB to each L2ARC device during Turbo Warmup Phase. The
sysctl vfs.zfs.12arc_write_boost controls the extra bandwidth allocated.

You can change these sysctls at any time. Here we set both to 16 MB.

sysctl vfs.zfs.l12arc_write_max=16777216
vfs.zfs.12arc_write_max: 8388608 -> 16777216

sysctl vfs.zfs.l12arc_write_boost=16777216
vfs.zfs.12arc_write_boost: 8388608 -> 16777216

Software settings will not let you exceed the hardware’s limitations,
of course.

SSDs are not as notoriously fragile as they once were. A modern
data center class SSD, like a 200 GB Intel DC S3700, has an Endur-
ance Rating of “10 drive writes per day for 5 years.” This translates
to around 2,000 GB per day, or 23 MB/second. You could constantly
write 23 MB/s to this drive, and according to Intel it would endure for
five years. On a high-performance server, tuning the throttle sysctls
up to these values and adding a note to order a new cache device in 58
months would make sense. As your host probably won't write to the
L2ARC at full throttle all of the time, turning these parameters even

higher might make sense.

ZFS Intent Log

Caches aren't just for reading data. ZFS uses caches for writes as well,
through the ZFS Intent Log (ZIL). ZFS dumps writes to the ZIL, and
then processes those writes to add them properly to ZFS. Every pool

has its own ZIL. In normal use, ZFS uses a chunk of space on each

136

Chapter 7: Caches

provider for the ZIL. If you desire, you can add an external device for
use as a ZIL. Strictly speaking, the ZIL isn’t exactly a write cache. But
it’s sort of cachey, so we'll cover it in this chapter.

The ZIL doesn’t work the way most people think it does, however.
To understand when a pool needs a separate logging device and when

it doesn’t, you must understand how ZFS writes data.

Sync and Async Transactions

ZFS is all about the integrity of data that reaches permanent storage.
Data on the disk should always be coherent. A system might lose data
in between the program and the disk, but no filesystem can protect in-
flight data residing only in RAM.

To ensure on-disk data integrity, ZFS groups write requests in
transaction groups, or ¢xgs. A transaction group is a bunch of data and
the associated filesystem metadata. When you ask the system to write
to disk, ZFS collects those writes in a transaction group. One transac-
tion group can include writes from many unrelated processes. Once
the group has enough data or a timer expires, that transaction group
gets written to the disk. That timer might be as long as 30 seconds or
as short as five, depending on which release of FreeBSD you're run-
ning.

A transaction group is the filesystem’s to-do list. Exactly like your
to-do list, if something horrible happens the list gets thrown to the
wolves'. Data is vulnerable to system failure until it is completely
written to the disk. If the system crashes or dies before the transaction
group is written to disk, that data is lost. Reducing the transaction
group timeout might reduce the amount of data loss, but it also badly

impacts performance.

19 Wolves, of course, don’t care about paper lists. For this meta-
phor to work well, we suggest writing your to-do lists on rump roasts.

137

Chapter 7: Caches

As the sysadmin, it’s your job to manage the risk of data loss. Let’s
walk through writing data to disk.

A program hands the kernel a chunk of data and says, “Please
write this to the disk” The program does not proceed until the kernel
acknowledges receipt of the data. Once the kernel says, “I have the
data,” the program continues. A program waiting for this response is
said to be blocking on 1/0.

The important question is: when does the kernel acknowledge
receipt of the data? When the data is added to a transaction group, or
when it’s written to disk?

In normal operation, the kernel acknowledges the data when the
data is in memory as part of a pending transaction group. The data
is not on the disk—the kernel has merely claimed responsibility for
the data. If the system were a restaurant, dinner would now be in the
waiter’s hands on the way to the customer, but the waiter could still
trip. Variants on asynchronous operation are common among modern
filesystems, such as the various versions of Linux’s extfs and BSD UFS.

A filesystem can also work in synchronous mode, where the ker-
nel acknowledges data only when the bits are actually written to the
physical storage medium. Sync mounts are extremely safe, but also
extremely slow. The program that wrote the data will block waiting for
the physical hardware to respond to the kernel’s write request. Certain
programs, such as database servers, request synchronous acknowl-
edgement for particular files by using the fsync(2) system call. The
sysadmin might mount the dataset synchronously, so that the system
only acknowledges data when the write is complete, or could use the
fsync(8) program to tell the system to flush everything to disk right

now.

138

Chapter 7: Caches
ZFS Intent Log

When ZFS writes files in synchronous mode, it doesn’t immediately
push a transaction group to the disk. Instead, those writes get dumped
on the ZIL. They’re not neatly ordered as ZFS dataset blocks; instead,
they’re just a heap of blocks on the disk. When the transaction group
gets written to disk, the blocks on the ZIL get written to their proper
location.

The pool import process checks the ZIL for data that hasn’t yet
reached its final home. If the system finds in-flight blocks in a pool it’s
importing, it completes those transactions.

Pools normally use a small chunk of space on each storage pro-
vider as the ZIL. Yes, this means each synchronous write gets written
to physical storage twice. But the pool only uses the ZIL for synchro-
nously-written data. Normal, asynchronous writes get stored in RAM
and committed as part of a regular transaction group.

You can sometimes improve performance by putting the ZIL on a
dedicated, fast device, called a Separate Intent LOG.

Separate Intent Log

You can separate the ZIL from the pool by using a Separate Intent
Log, or SLOG. By moving the ZIL to separate, dedicated hardware,
you avoid writing the same data twice to the storage providers. If the
SLOG hardware is faster than the pool, the kernel can acknowledge
the data more quickly, improving the performance of the requesting
application.

Despite common usage, a SLOG is not the same thing as a ZIL.
The SLOG is the hardware. A ZIL lives on either the SLOG or the stor-
age providers. You can launch the SLOG through a window, but you

can only swear at the ZIL.

139

Chapter 7: Caches

The fastest, most reliable, and most expensive SLOG is an NVRAM
chip. High-endurance SSDs are the most common choice for SLOG.
You can even use very fast SAS drives, but they’re the least reliable.
Every one of these needs a private power source, such as a battery or a
supercapacitor, to let them complete writes in case of a system power
failure.

A SLOG does not need to be large. The sysctl vfs.zfs.dirty_data_
max gives the maximum possible amount of in-flight data. FreeBSD
10’s ZFS defaults to using a ZIL with a size equal to one-tenth of the
system RAM. You could use a single piece of hardware to support
SLOG providers for more than one pool, but that also splits that de-
vice’s I/O between those pools. One reason for using a SLOG is to cope
with I/0O shortages.

Not all SSDs or NVRAMs are created equal. Many devices mar-
keted as “high endurance” aren’t robust enough to handle all the
writes for even a medium-sized pool. For an application where
data integrity is vital, the authors strongly encourage you to consult
with a hardware vendor that specializes in ZFS, such as iX Systems
(http://www.ixsystems.com). A properly chosen SLOG can vastly ac-

celerate your programs, while a poor choice can corrupt your pool.

Per-Dataset ZIL Tuning

You can control how (or if) a dataset uses the ZIL with the synec prop-
erty. Much like mounting a traditional filesystem sync or async, the
sync property dictates whether the dataset honors fsync(2) requests.
The default setting, standard, tells the dataset to use the ZIL for
synchronous requests. If a program uses fsync(2) to request that the
kernel not acknowledge the data until it’s safely on disk, the data gets
written to the ZIL. Other data is written asynchronously, as part of a

transaction group. This is the default.

140

Chapter 7: Caches

Setting sync to always sends all writes to the ZIL. No writes are
asynchronous. This is the safest way to manage data, but it has a se-
rious performance penalty. You might choose to set this property on
datasets dedicated to critical data.

Setting sync to disabled completely disables use of the ZIL on this
dataset. All writes are asynchronous. The system lies to every program
that uses sync(2). Never, never disable the ZIL on any dataset used by
a database or NFS. Really, the only reason to disable the ZIL on a data-
set is to verify that the ZIL is not causing your particular application
a performance problem. If disabling the ZIL fixes your application,
definitely file a bug report or install a fast SLOG device.

In almost all cases, leave sync at standard. You might have one or

two datasets that need sync to be set at always.

Synchronous Writes through the Stack

ZFS winds up as the data storage backend for many different applica-
tions, such as the Network File System (NFS) and iSCSI. You might
use a zvol for a virtualized system’s drive. All of these different layers
operate independently. While they can talk to each other through the
common system calls and APIs, they don’t control each other. Each
layer of an application stack can (and routinely does) lie to the other
layers. And nowhere is this more obvious, and more dangerous, than
the fsync(2) system call.

Suppose you have a virtual machine that runs oft an iSCSI drive,
backed by a zvol on your server. The virtual machine’s operating
system requests a synchronous disk write. The iSCSI stack takes that
request and passes it to ZFS. If you set sync to disabled on that zvol
ZFS sniggers, says “Synchronous? Sure! You got it, buddy,” and waits to

do anything until the next txg.

141

Chapter 7: Caches

You might set sync to always on the zvol, accepting the perfor-
mance hit in the name of data integrity. But if the iSCSI stack disables
synchronous writes, you'll take that hit without any benefit. Any layer
of a complex application stack might disable synchronous writes.

If data integrity is important, verify that synchronous writes work

throughout your application stack.

zpool.cache

Now let’s discuss a cache that you'll hear about, but that doesn’t affect
day-to-day system administration: the file /boot/zfs/zpool. cache.

The zpoo1l.cache file contains a description of the pools currently
active on the system and their providers. When you boot a ZFS sys-
tem, the kernel checks the zpoo1.cache file on the root pool to discov-
er which of the system’s pools it should import.

ZFS zdb(8) uses information in the cache file for debugging. You
can't use the debugger on a pool without a cache.

You can control the cache file’s location with the cachefile proper-
ty. Here, we change the cache file for the pool worx.
zpool set cachefile=/work/zfs/work.zpool.cache work

Despite much lingering, obsolete documentation to the contrary,
there’s almost never a reason to change the cachefile location on
modern versions of ZFS or FreeBSD.

Now that you understand the cache, we can talk about perfor-

mance.

142

Chapter 8: Performance

We all like our storage to be fast, featureful, and infinite. We haven’t
quite hit infinite capacity yet, but on good hardware ZFS’ features can
be pretty fast. Even the best hardware can turn slow for no apparent
reason, however. Knowing how to use the diagnostic tools can help
you understand a system’s performance. Maybe you can't fix it with the
equipment on hand, but at least you’ll understand what’s going wrong
and maybe shift some of the load elsewhere.

FreeBSD includes tools to check both generic disk and filesystem
performance as well as ZFS-specific tools. You can get detailed in-
formation through sysctl(8), vmstat(8), and related commands, but
we strongly recommend installing the add-on package zfs-stats to
conveniently parse and process that information.

Once you understand how to assess system performance, we'll dis-
cuss several ZFS performance features and when they might be useful.

Before diving into assessing ZFS performance, let’s talk a bit about

performance in general.

What Is Performance?

Performance might be described as “how well a system manages a
workload” Every system has a slightly different workload, so perfor-
mance varies even between identical hardware performing seemingly
identical tasks. Even if you try very hard to replicate hardware, soft-
ware installations, and workload on another system, somebody can
find a difference between them. That’s part of what makes benchmark-

ing so annoying.

143

Chapter 8: Performance

A system administrator mostly cares about improving performance.
This means identifying and removing bottlenecks. The average comput-
er has four basic resources: storage input/output, network bandwidth,
memory, and CPU. If you pile work on a system until it can’t handle any
more, what you're really doing is discovering which of these four re-
sources you saturate first. That resource is your bottleneck.

Increasing performance requires identifying and shifting bottle-
necks. And you’ll always hit another bottleneck. If your CPU is the
current bottleneck, and you add more processing power, the computer
speeds up until it saturates disk I/O or memory or the network. You've
improved performance, yes ... up to the limit permitted by the new
bottleneck.

And a different workload probably has a completely different
bottleneck.

A lot of systems administration requires exchanging one of these
four resources for another. It's why Lucas always refers to “system tun-
ing” as “rearranging bottlenecks*

Consider ZFS compression for a moment. ZFS compression reduc-
es the amount of data the system writes to, and pulls from, the disk.
Compressing and decompressing blocks consumes processor time.
Compression exchanges storage I/O for CPU time. Most computers
have far more processor oomph than they can possibly use, however.
The laptop I'm writing this on has a four-core processor, but a single
middling-speed disk with very limited I/O. Enabling compression is
an obvious win on this system. On a system with more disk I/O than

processor power, you might make a different decision.

20 Lucas calls many things “rearranging bottlenecks.” He solves
the “dirty clothing” bottleneck by expending the time and detergent
resources. At the precise moment you're reading this, he’s almost cer-
tainly suffering from a gelato bottleneck.

144

Chapter 8: Performance

The more complicated your storage is, the more you can adjust
and shift storage bottlenecks. Your server has six disk controllers, but
all the I/O is going to one of them? Rearrange your datasets to split
the load across multiple controllers. Maybe a particular disk is satu-
rated? Split up that load. Perhaps your pools are saturated with writes,
or reads, or both. Add a properly configured SLOG and an L2ARC to
help.

Before you make any changes, though, investigate where the bot-
tleneck is. Purchasing a faster disk system won’t help if your system’s
particular workload is limited by CPU or memory. Adding a fast SSD
for a ZIL won’t improve performance if disk reads throttle the server’s
performance.

One of many perennial questions in systems administration is:
what's eating up my disk bandwidth? A ZFS pool scrub can impact
other operations, but in routine use, ZFS doesn't create any new an-
swers to this question. Use top -m io to identify the processes using
the disk most intensively. Should the most active processes be that
busy?

If your performance doesn’t match your expectations, remember
that your storage system performs only as well as its slowest compo-
nent. You can have a really fast SAS controller and top-of-the-line,
high-speed hard drives but get terrible performance because of the
cruddy drive cables. A SATA port multiplier slashes performance
proportionally to the number of drives attached. Just because you can

plug certain hardware components together, doesn’t mean you should.

ZFS and Performance

Much of the usual storage performance tuning advice applies to ZFS as
it does any other filesystem. If you don’t need to know when a file was

last used, disable recording access time with the atime property.

145

Chapter 8: Performance

ZFS is designed to work with lots of disk space. A pool that’s more
than 80 percent full performs badly. That’s inherent in how ZFS is put
together. If you're trying to figure out why an almost full pool is run-
ning slowly, move some of the data to another pool. Releasing space
on a nearly full pool alleviates most ZFS issues.

ZFS is also designed to work with 64-bit systems. With some
persuasion, luck, and a little traditional Haitian voodoo, you can get
ZFS to work on 32-bit FreeBSD. It won't work well, and it won’t be
efficient—but the system will boot. Becoming frustrated with ZFS
performance on 32-bit systems is like getting annoyed at the dancing
bear with a poor sense of rhythm. In both cases, the amazing thing is
that it works at all.

If the usual sysadmin advice for increasing filesystem performance
doesn’t help solve your problems, you must dive in and see why your
storage system is behaving poorly. Every operating system includes
tools for measuring performance. FreeBSD’s vmstat(8) can quickly
identify if your system is waiting for processor, storage, or memory.

To see how well your pools perform, use zpool iostat.

zpool iostat

The iostat component of zpool gives a snapshot of how your pools
are performing at a particular instant in time. To see average activity

on your pools since the system booted, run zpool iostat.

zpool 1iostat
capacity operations bandwidth
poo alloc free read write read write

work 2.21G 1.81T 2 402 36.2K 24.0M
zroot 15.5G 905G 275 0 7.34M 0

146

Chapter 8: Performance

We have the name of each pool, with the amount of allocated and
free space in each. The last four columns display each pool’s read and
write activity, in units of both operations per second and bytes per
second.

This example shows two pools, work and zroot. The zroot pool has
15.5 GB allocated and 905 GB free. The pool is doing 275 read opera-
tions per second, or 7.34 MB per second, and no write operations. This
means each read operation averages around 27 KB (7.34 MB / 275 =
27 KB).

The work pool is more interesting. We have two read requests per
second, but 402 writes per second for a total of 24 MB/s. The reads are
negligible, but each write averages about 60 KB. There’s actual work
happening here.

What does this mean for your pool? Taken on its own, not much.
This is the pool activity at a particular instant. This instant might be
average, or it might be a high or low period. You need an ongoing view
of pool activity to make any sensible decisions.

To view the activity for a single pool, give the pool a name.

zpool 1iostat work
This eliminates all output except that for the specified pool.
Remember, this is an average of behavior since the system booted.

It doesn’t reflect current values.

Current & Ongoing Pool Activity

To see how the pool is behaving at this particular moment, and how
activity changes over time, have zpool iostat print new statistics ev-

ery few seconds. Specify a number of seconds at the end of the com-

mand line. Here we get updates every two seconds. Hit cTrL-c to exit.

147

Chapter 8: Performance

zpool 1iostat 2
capacity operations bandwidth
pool alloc free read write read write

work 3.37G 1.81T 14 107 146K 900K
zroot 15.5G 905G 3 2 32.9K 12.7K
work 3.37G 1.81T 0 0 0 0
zroot 15.5G 905G 0 0 0 0

The first entry is the average activity since the system booted,
exactly as if you had run zpoo1 iostat without an interval. The second
and later entries give current values.

After the headers, the first two entries give the pool activity when
you first run the command and a set of dotted lines. Two seconds later,
it prints a new set of data below the separator.

If you specity checking a single pool, zpoo1l iostat loses the sepa-

rators. Here we look at the work pool.

zpool 1iostat work 2

capacity operations bandwidth
pool alloc free read write read write
work 3.35G 1.81T 15 104 148K 897K
work 3.35G 1.81T 0 616 2.25K 3.74M
work 3.35G 1.81T 1 553 5.74K 2.78M
work 3.36G 1.81T 1 607 21.0K 2.57M

This pool averages 104 write operations per second, but at this
moment it'’s doing over 600 write operations per second. It’s doing real

work!

Virtual Device Activity

While each pool contains one or more identical virtual devices, the
pool’s usage of those virtual devices might not be identical.
One common situation is when you have a nearly full pool and

add a new virtual device to it to gain more space. The pool’s apparent

148

Chapter 8: Performance

write performance might then drop to that of the new virtual device,
rather than the theoretical throughput of the entire pool with all its
virtual devices. The new virtual device has all of the free space, so
that’s where the new writes go. Over time, as you delete old files and
remove old snapshots, per-VDEV utilization might average out. De-
pending on your workload, however, VDEV utilization might never
reach equilibrium.

To view per-VDEYV activity of each pool, add the -v flag after
iostat.

Like regular non-verbose zpool iostat, the first set of output you
get represents the average since the system booted. In verbose mode,

these numbers look kind of weird.

zpool 1iostat -v work

capacity operations bandwidth

pool alloc free read write read write
work 2.13G 1.81T 10 87 100K 715K
mirror 1.06G 927G 5 43 50.9K 359K
gpt/zfs0 - - 2 8 26.4K 360K
gpt/zfsl - - 2 8 26.6K 360K
mirror 1.07G 927G 4 43 49.6K 356K
gpt/zfs2 - - 2 8 25.0K 357K
gpt/zfs3 - - 2 8 26.4K 357K

You'll get a total for the pool, totals for each VDEV in the pool,
and a number for each provider in the pool. Look at the write oper-
ations per second on this pool. The pool as a whole has averaged 10
read operations per second since system boot. The first mirror device
is responsible for five of these, the second for four of them. Each disk

within each virtual device handles two reads per second.”

21 These are averages, so don't let the fact that ZFS thinks 2+2=5
worry you. ZES checksum functionality does math more properly.

149

Chapter 8: Performance

The write activity looks downright strange. ZFS’ initial data shows
that this pool averages 87 write requests per second, with 43 coming
from each pool. That’s not bad—but the per-disk values show that each
disk averages eight write requests a second. No matter how grotesquely
you round these values, they aren’t even close.

The short answer is, ZFS’ per-disk averages are not very reliable
as raw numbers. They’re proportionally correct. The zpool iostat
doesn’t lock in-kernel data structures while measuring performance,
so you'll get slight variations as the command runs.

Just as with non-verbose zpool iostat, to see current values you
must provide an interval at the end of your command line. Here we
show the per-device activity on the pool work, updating every two

seconds.

zpool 1iostat -v work 2

capacity operations bandwidth

pool alloc free read write read write
work 2.31G 1.81T 0 69 0 147K
mirror 1.15G 927G 0 40 0 93.6K
gpt/zfs0 - - 0 10 0 94.9K
gpt/zfsl - - 0 10 0 94.9K
mirror 1.16G 927G 0 28 0 53.3K
gpt/zfs2 - - 0 6 0 54.6K
gpt/zfs3 - - 0 6 0 54.6K

The first mirror VDEV performs more I/O operations per second
than the second mirror. Again, the individual disk numbers don’t add
up to the total number of operations in the device, but they’re propor-
tionally accurate.

Now that you can see how well your pools are working, let’s discuss

some features that can change how well your pool performs.

150

Chapter 8: Performance
ZFS Prefetch

The job of a filesystem is to provide stored data on request. ZFS takes
that idea further, by getting ready to provide data you're about to ask
for. This takes place on two levels, per-VDEV and per-file. FreeBSD
doesn’'t enable per-VDEV prefetch by default, but enables per-file
prefetching.

Per-VDEV Prefetch

The most time-consuming part of retrieving data from a spinning
disk is positioning the heads over the tracks containing the data. It’s
like making a sandwich—slapping peanut butter between two slices

of bread takes two minutes, but going to the store to get bread and
peanut butter might take you an hour. Once the hardware is physically
arranged, reading a full track of data off of a disk spinning at 5,000 or
10,000 RPM takes microseconds.

Per-VDEV prefetch is an attempt to make moving the heads
worthwhile. FreeBSD does not use per-VDEYV prefetching by default,
but if your workload involves complicated metadata, complex or large
directory trees, or many small files, per-VDEV prefetch might help
you.

Whenever ZFS reads a few blocks off the VDEYV, it also reads the
few blocks after the target blocks, looking for metadata. Any metadata
found gets stuffed into a special per-VDEV prefetch cache. There’s a
good chance that the requesting program will return and ask for that
metadata. Each time a program requests that prefetched metadata,
ZFS provides it from the cache, returns to the physical VDEV, and
prefetches more blocks.

Per-VDEYV prefetched blocks go into a simple rolling Least
Recently Used cache, not the ARC. If the blocks are never called,
they quickly get discarded. The size of a VDEV’s cache equals

151

Chapter 8: Performance

the number of storage providers in the VDEV times the tunable
vis.zfs.vdev.cache.size. FreeBSD sets this to 0 by default, so the cache is
not used. Enable the cache by setting this tunable to the desired value

in /boot/loader.conf. A common value is 10 MB.

vfs.zfs.vdev.cache.size="10M"

After a reboot, you'll have a per-VDEV prefetch cache in play.

The sysctl kstat.zfs.misc.vdev_cache_stats.misses shows how many
times ZFS checked the per-VDEV cache for metadata and didn’t find
it. Similarly, the sysctl kstat.zfs.misc.vdev_cache_stats.hits shows how
often ZFS found something in the cache.

Test your workload with and without per-VDEV prefetch and see
how it behaves.

How much does per-VDEV prefetching preemptively cache? The
sysctl vfs.zfs.vdev.cache.max gives the minimal size of a read from a
VDEDV. This defaults to 16384, or 16 KB. If a program requests a read
smaller than this size, per-VDEV prefetching kicks in.

The read isn't just expanded to 16 KB, however. The sysctl
vfs.zfs.vdev.cache.bshift gives the amount of data to be prefetched and
searched for metadata. This is a bit shift value, so the default of 16
means 64 KB.

So, if a program requests a read smaller than 16 KB, ZFS reads 64
KB instead. If a program requests a read of, say, 20 KB, no per-VDEV
prefetching occurs.

While changing the prefetch values helped performance with
some older versions of ZFS, in modern ZFS you should almost always
leave them alone. The authors are not aware of any situations in which
changing these values helps, but we do know of many times when

changing these values causes suffering.

152

Chapter 8: Performance
Per-File Prefetch

If a program requests the start of a file, it'll probably want the rest of
the file before long. ZFS’ per-file prefetching tries to anticipate such re-
quests, caching the file in the ARC before the program gets around to
asking for it. This makes ZFS feel more responsive. This is often called
ZFS intelligent prefetch, or sometimes just prefetch. While file-level
prefetching might not appear terribly sophisticated, most filesystems
don’t manage it.

File-level prefetch increases the size of the ARC. FreeBSD auto-
matically disables prefetching on hosts with less than 4 GB of RAM,
and automatically enables it for hosts with 4 GB or more. You can
override this by setting the tunable vfs.zfs.prefetch_disable to I in
/boot/loader.conf.

Prefetch can cause problems on systems that host hundreds of
thousands (or more) tiny files, such as 64 KB and smaller. You’ll want
to disable file-level prefetch for such hosts. Those systems are fairly
rare, however.

Normally, file-level prefetch improves performance if your sys-
tem has sufficient memory to support it. You can enable and disable

prefetch to test performance, but in almost all cases prefetch is helpful.

Transaction Group Tuning

You can tune performance by adjusting transaction groups and the
I/0 scheduler. We're specifically covering tuning FreeBSD 10 and later.
The mechanisms for tuning OpenZFS writes in earlier versions were
considerably more baroque.

A transaction group, or txg, is a single lump of data written to disk
in an ordered manner. A transaction group can contain many blocks
from many different programs. If the entire transaction group is not

successfully written to the disk, the entire group is canceled.

153

Chapter 8: Performance

You can control how often the system writes a transaction group

and its maximum size.
txg Timing

If nothing else triggers writing a txg to disk, ZFS write every few sec-

onds, as given by the sysctl vfs.zfs.txg.timeout. While the value of this
setting flailed around a bit in earlier releases of OpenZFS, the current
standard is five seconds. Worst case, any pending data gets written to

disk every five seconds.

For most systems, writing every five seconds is fine. A program
like top(1) might show a burst of CPU activity every five seconds as
the pending transaction group gets compressed. You rarely would
reduce the timeout to less than five seconds.

Increasing the value might make sense for some systems, howev-
er. If you're running ZFS on a low-load virtual machine, you might
crank the txg timeout up to 15 or so. Lucas often runs hosts like LDAP
mirrors and authoritative DNS servers on virtual machines, and these
kinds of hosts rarely have high demand for disk I/O. Reducing the
frequency of transaction writes wouldn't improve performance on this
particular virtual machine, but it would improve hardware access for
other VMs running on that hypervisor. Giving all the virtual machines
on that host similarly low settings would improve performance for
virtual machines across the board, but a single selfish or high-load VM
could eat up many of those gains. (That might be exactly what you're
trying to achieve, however.)

On typical hardware that shares reading and writing bandwidth,
increasing the timeout might improve read performance most of the
time, but will degrade read performance during writes.

If the timer expires and the system has no transactions waiting to

be written to disk, ZFS won't write any data. ZFS won’t write an empty

154

Chapter 8: Performance

transaction just for the sake of having a transaction group. It still in-
crements the transaction group count, however.

Setting the transaction group timeout to less than five seconds
runs up against the I/O scheduler and the write throttle. For most of

us, five seconds is the minimum sensible value.

txg Size

A txg that grows sufficiently large gets committed to disk before the
timeout. FreeBSD auto-tunes the maximum size of a transaction group
at boot time based on the amount of memory in the host and the tun-
able vfs.zfs.dirty_data_max_percent. The default is 10, up to a maxi-
mum of 4 GB, and is controlled by vfs.zfs.dirty_data_max_max. Once
a transaction group uses 10 percent of a system’s RAM, it gets written
to disk.

You can change the maximum size of a transaction group after
boot with the sysctl vfs.zfs.dirty_data_max. This value is in bytes, so
multiply your desired number of gigabytes by 1024’ to get the proper
sysctl value.

The hard question is: should you change the size of the transaction
group? How long does it take your system to write 10 percent of RAM
to disk, and how often does that happen? Most hosts have far more
RAM than they have I/O throughput. Trying to write one tenth of
RAM to disk in five seconds would be a disaster. Lucas’ test host has
several hard drives in a single pool and 32 GB of RAM. Writing 3.2
GB to disk takes over 20 seconds. If this host generated 3.2 GB of disk
activity in less than the standard five-second txg timeout, the machine

would quickly spiral into unusability.

22 You can change vfs.zfs.dirty_data_max_percent after boot. It
won't affect system performance in any way, but you can change it.

155

Chapter 8: Performance

If your system has a high-performance disk array with great big
gobs of throughput and an economy-sized pile of RAM, though, you
might find increasing the maximum value useful.

During these “write cycles,” most reading from disk is suspend-
ed. This allows the write to complete as quickly as possible. Reading
resumes once writing is complete. “Interleaving” the workload like
this usually increases performance. Using knowledge of your work-
load, you can decide if flushing larger transaction groups less often
or smaller ones more often is the best approach. When bulk copying
data inside the same pool, Jude increased the txg size to 24 GB and the

timeout to 30 seconds, and improved performance by 25 percent.

txg Duration and Contents

If you're trying to tune the size and period of transaction groups, it
makes sense to ask how large your transaction groups are and how
long they take to commit to disk. Adam Leventhal has created some
DTrace scripts useful for measuring both, available at http://dtrace.
org/blogs/ahl/2014/08/31/openzfs-tuning/ or at http://zfsbook.com.
We'll discuss both.

To measure the amount of data in each txg, use Leventhal’s script
dirty.d. (“Dirty data” is in memory, waiting to be written to disk.)
txg-syncing

this->dp = (dsT_pool_t *)arg0;
}

txg-syncing
/this->dp->dp_spa->spa_name == $$1/
{
printf(“%4dMB of %4dMB used”, this->dp->dp_dirty_total / 1024 / 1024,
‘zfs_dirty_data_max / 1024 / 1024);
}

Run this script giving the name of a pool as an argument.

156

Chapter 8: Performance

dtrace -s dirty.d zroot

dtrace: script ‘dirty.d’ matched 2 probes

CPU ID FUNCTION:NAME
3 61042 :txg-syncing 2MB of 6539MB used
1 61042 :txg-syncing 7MB of 6539MB used
4 61042 :txg-syncing 5MB of 6539MB used

DTrace prints the size of each txg, and the size of the ARC, every
time ZFS writes the txg to disk. If you change the interval between
transaction groups with the vfs.zfs.txg.timeout sysctl, you'll see the
sizes of the transaction groups change.

Leventhal’s duration.d shows how long each transaction group

takes to complete.

txg-syncing
/((ds1_pool_t *)arg0)->dp_spa->spa_name == $$1/
{

start = timestamp;

}

txg-synced
/start & & ((ds1_pool_t *)arg0)->dp_spa->spa_name == $$1/
{
this->d = timestamp - start;
printf(“sync took %d.%02d seconds”, this->d / 1000000000,
this->d / 10000000 % 100);
3

Use it exactly like the first script, giving the pool name as an

argument.

dtrace -s duration.d zroot
dtrace: script ‘duration.d’ matched 2 probes

CPU ID FUNCTION:NAME
1 61043 :txg-synced sync took 0.11 seconds
2 61043 :txg-synced sync took 0.24 seconds
4 61043 :txg-synced sync took 0.22 seconds
2 61043 :txg-synced sync took 0.31 seconds

Despite our best efforts, ZFS isn’t working very hard on this

system.

157

Chapter 8: Performance

If you see that your transaction groups are bouncing up against the
maximum txg size, you might want to either increase the txg size or
decrease the time between transaction groups.

Once you get the hang of these, Jude created a script that measures
both of these simultaneously.

#!/usr/sbin/dtrace -s
txg-syncing
/((dsT_pool_t *)arg0)>dp_spa>spa_name == $$1/
{
start = timestamp;
this->dp = (ds1_pool_t *)arg0;
d_total = this->dp->dp_dirty_total;
d_max = “zfs_dirty_data_max";

b
txg-synced
/start && ((ds1_pool_t *)arg0)>dp_spa>spa_name == $$1/
{
this->d = timestamp - start;
printf(“%4dMB of %4dMB synced in %d.%02d seconds”,
d_total / 1024 / 1024,
d_max / 1024 / 1024, this->d / 1000000000,
this->d / 10000000 % 100);
b

Simultaneously viewing txg size and timing can provide additional

insight into how your pool really behaves.

Write Throttle

One term you'll hear thrown about is the write throttle. The write
throttle comes into play when a program feeds data into memory
faster than ZFS can write it to disk. As the system RAM gets more and
more full, ZFS starts inserting a small delay into each write request.
Programs wait until they get a response to their write requests, so put-
ting a delay here forces them to slow down. The goal is to determine
how much load the disks can take, and slow down programs so that

they run at exactly that speed.

158

Chapter 8: Performance

In older versions of ZFS, the write throttle caused very irregular
performance. The write throttle algorithm in FreeBSD 10 and newer
works much more smoothly. You can tune it through the I/O schedul-

er, discussed next.

1/0 Scheduling

Not all hardware is created equal. Jude’s top-of-the-line laptop has a
lot less I/O capacity than any of his Content Delivery Network servers.
FreeBSD’s default settings are fairly generic. While you don’t really
need to tune them on a laptop, if you have dozens or hundreds of disks
with very specific workloads you can adjust performance through
tuning the scheduling. Scheduling I/O lets you adjust latency and
throughput.

Throughput is the amount of data that can be read from and writ-
ten to the storage device. When you say that SATA-3 can transfer data
at 6.0 GB/s, you're talking about throughput.

Latency is the length of time the system needs to service those re-
quests. A complicated storage system, with Fiber Channel busses and
multiple shelves in multiple parts of the building, might induce laten-
cy as requests traverse the system. Your laptop is more likely to have
storage latency when you overload the hard drive by copying too many
files simultaneously.

While hard drives are generally marketed with a description of
how many I/O operations they can perform per second (IOPS), that
isn’t as useful a term as you might think. Being able to perform 250
IOPS of carefully selected data says nothing about the drive’s ability to
perform with your data.

Think of hard drives like automobiles. Some are optimized for
capacity, others for mileage. A huge tandem tractor-trailer rig can haul

far more stuff than a Tesla Roadster, but it sure isn’t snappy off the red

159

Chapter 8: Performance

light. Most of us would use the big truck to move a hundred-person
call center across town over the weekend, but prefer different opti-
mizations to get a child to the hospital before her appendix finished
rupturing.

Unlike a car, you can to a certain extent control the optimization
of most hard drives. (Some specialty storage devices are specifically
designed for certain optimizations.) That’s why you can dump huge
amounts of data on your laptop’s hard drive and make the system seem
unresponsive—you've just exchanged throughput for latency.

ZFS 1/0 scheduling is designed to smooth out latency. This can
reduce throughput, but makes the overall experience more consistent.
Generally, by changing the scheduling, you're trying to improve per-
formance while not introducing too much latency.

ZFS scheduling is built around I/O queues.
Measuring Latency and Throughput

How do you know if a change positively affects system performance?
You measure it. Adam Leventhal wrote a latency and throughput

DTrace script for illumos, but here’s a version modified for FreeBSD.

#pragma D option quiet
inTine uint32_t BIO_READ = 1;
inTine uint32_t BIO_WRITE = 2;
this uint64_t delta;
BEGIN
{
start = timestamp;
h
io:::start
/ args[0] /
{
ts[args[0]] = timestamp;
h
io:::done
/args[0] && ts[args[0]]/
{

160

Chapter 8: Performance

this->delta = (timestamp - ts[args[0]]) / 1000;
this->name = (args[0]->bio_cmd & (BIO_READ | \
BIO_WRITE)) == BIO_READ ?

“read “ : “write “;

@q[this->name]
@a[this->name]
@v[this->name]
@i [this->name]
@b[this->name]
ts[args[0]] = O;

quantize(this->delta);
avg(this->delta);
stddev(this->delta);
count();
sum(args[0]->bio_bcount);

END

printa(@q);
normalize(@i, (timestamp - start) / 1000000000);
normalize(@b, (timestamp - start) / 1000000000 * 1024);

printf(“%-30s %11s %11s %1ls %11ls\n”, “”, \
“avg latency”, “stddev”, “iops”, “throughput”);
printa(“%-30s %@9uus %@9uus %@9u/s %@8uk/s\n”, @a, \
@v, @i, @);

Run this script several times while your system experiences nor-

mal load to get accurate baselines for latency and throughput.

dtrace -s rw.d -c ‘sleep 30’

The s1eep (1) command tells the script how long to spend gather-
ing data. The rw.d script watches the throughput and latency for this
many seconds, then prints out two graphs of read and write perfor-

mance. At the end you’ll get a report like so:

avg latency stddev idiops throughput
write 1362us 8378us 68/s 4620k/s
read 6943us 5839us 2/s 46k/s

Generally speaking, the goal of performance tuning is to improve
the numbers you care about without making the other numbers too
large. Play with the maximum number of permitted reads and writes

of each type, increasing them by 20-100 percent between runs. Make

161

Chapter 8: Performance

sure you don't hoist these values high enough that your VDEVs go
over the per-VDEV limit—or, alternatively, play with the minimums.

The stddev (standard deviation) column is especially noteworthy.
You might achieve excellent throughput, but find yourself with wildly
varying latency. Is massive throughput okay if some of your reads and
writes take five seconds to complete? Only you know.

When adjusting read performance, beware of the ARC. If you keep
accessing the same file, the kernel uses the in-memory copy rather
than re-reading it from disk. To properly test read performance, you
must flush commonly used files from the ARC. Either unmount and
remount your read-intensive datasets, or just reboot the machine.

Yes, performance tuning and testing is intrusive. There’s a reason
why most people don't bother doing it. The good news is, ZFS per-
forms pretty well with the default settings.

1/0 Queues

ZFS breaks I/0O traffic up into five queues: sync reads, async reads,
sync writes, async writes, and scrubs. Each has a pair of related sysctls
that control the maximum and minimum outstanding requests of that
type that can be active concurrently on each storage provider.
Synchronous reads are when the application is asking for the
data right now. The application, and possibly the user, is sitting there
waiting for that data before it can continue doing its work. Synchro-
nous writes, similarly, request that the data get written immediately.
Databases—and other applications that want to be sure that they do
not do “the next thing” until this data is safely on the disk—request
synchronous writes. In ZFS, synchronous writes are done as quickly as
possible. This is where the SLOG comes in, a fast dedicated device that
synchronous writes can be stored on temporarily, more quickly than

storing them normally.

162

Chapter 8: Performance

Asynchronous reads are less important, mostly consisting of ZFS’s
prefetch feature, loading data from the disk in anticipation of your
needing it. The application will be notified when ZFS gets around to
reading this data in and making it available, rather than explicitly wait-
ing for it. Asynchronous writes work in a similar fashion. The applica-
tion gives some data to ZFS and says, “write this down at some point.”
ZFS holds the data for asynchronous writes in memory until the next
txg is closing, then flush it to the disk. Grouping these writes together
and writing them out en masse improves performance.

The maximums and minimums do not apply simultaneously, how-
ever. The maximums apply in one set of conditions, while the mini-
mums apply in different conditions. Some of these values for a type of
write are identical —both the maximum and minimum for sync reads
are set to 10, for example. This isn’t a conflict, only different settings
for a different situation.

Sync reads include data requested by a program. Call-
ing up a file in your text editor is a sync read. Control these
with the sysctls vfs.zfs.vdev.sync_read_max_active and
vis.zfs.vdev.sync_read_min_active. Each defaults to 10. The user is most
likely to notice latency in sync reads. If a user tries to open a file and it
takes five seconds instead of 50ms, the user will say the system is slow.

Prefetch requests are async reads; nobody has yet re-
quested that data, but ZFS guesses that the request will ar-
rive soon. If a program reads the first chunk of a file, ZFS has
a pretty good idea that a request for the rest of the file is com-
ing soon. Control the number of outstanding async read re-
quests with the sysctls vfs.zfs.vdev.async_read_max_active and
vis.zfs.vdev.async_read_min_active. These default to a maximum of
3 and a minimum of 1. The purpose of limiting the number of async

operations is to ensure that new sync operations do not end up at the

163

Chapter 8: Performance

back of the line behind a bunch of less important reads. When the number
of outstanding operations on the drive drops below the minimum, ZFS
adds more work to the queue, with the most important operations being
added to the queue first. The order of operations in the queue does not
change.

Sync writes are used where a program uses the fsync(2) system call.
These requests go straight to the ZIL, either on the data storage providers
or on a separate SLOG. These writes are the most important operation, as
the calling application is waiting for the operation to finish before it contin-
ues. Tuning this value too low decreases throughput and increases latency.
Writes in ZFS are usually batched, so take advantage of the write head be-
ing in the correct position to write as much data as possible at once. How-
ever, if the number of operations to queue is too high, sync reads must
wait for the already queued writes to finish, which can negatively impact
system responsiveness. The sysctls vfs.zfs.vdev.sync_write_max_active and
vis.zfs.vdev.sync_write_min_active control how many of these requests
may be pending per provider at any time. Both default to 10.

Async writes are normal traffic that doesn't traverse
the ZIL. Async writes sit in a txg, then get committed en
masse. The sysctls vfs.zfs.vdev.async_write_max_active and
vis.zfs.vdev.async_write_min_active control how many outstanding async
write requests can be simultaneously active on a single storage provider.
The default maximum is 10 and the minimum 1.

Scrub processes have their own queues, controlling how many out-
standing I/O requests can be active on a pool simultaneously. The sysctls
vis.zfs.vdev.scrub_max_active, with a default of 2, and vfs.zfs.vdev.scrub_
min_active, with a default of 1, control this queue. Tuning these knobs
adjusts how a scrub impacts system load. A higher queue depth makes
the scrub complete sooner, but queues other operations behind the scrub

operations.

164

Chapter 8: Performance

How ZFS uses these limits depends on the number of outstanding

requests permitted.

Per-VDEV Requests

To know how ZFS will schedule activity, you must know how many
outstanding requests can go to each of the system’s VDEVs. Consider
the maximum number of requests of each type per storage provider
(usually a disk), as given by the sysctls from the previous section.

sync read maximum: 10

async reads maximum: 3

sync write maximum: 10

async writes maximum: 10

scrub maximum: 2

A disk with the maximum number of simultaneous requests possi-
ble would have 35 outstanding requests. A 10-disk VDEV could have
350 simultaneous outstanding requests, where a 29-disk VDEV could
have 1015 simultaneous outstanding requests.

Looking at the requests of each type, you'll see that this is a fairly
balanced plan. Synchronous and asynchronous writes get their own
queues, so your writes won't overload the ZIL. You get as many reads
as asynchronous writes. File-level prefetch is turned down so ZFS’
guesses on the data your programs will want won’t overwhelm traffic
programs actively request.

Changing these values adjusts how ZFS can distribute requests.
You want your system balanced towards writing data? Increase the
maximum number of async writes. You want fast scrubs? Lift the scrub
request ceiling.

You cannot increase your hardware speed by cranking these set-
tings, however. The existing limits can more than saturate a 5400 RPM

SATA hard drive. High-end storage devices, where you have separate

165

Chapter 8: Performance

hardware for reading and writing, can probably handle slightly higher
values. Even then, you'll hit the maximum capacity fairly soon.

For solid-state storage, like SSDs, where the number of IOPS can
be much greater than with spinning disks, performance can be im-
proved by increasing all of these tunables. In order to get the most
performance out of your device, you must give it enough work to keep
busy, but at the same time, not so much work that it takes too long
to get to an important request added to the end of the queue. Use the
DTrace scripts provided earlier in this chapter to measure latency un-
der loads and adjust as necessary.

If you have super-duper hardware and raise the limits too high,
though, you'll hit the per-VDEV limits, changing everything.
Scheduling Large VDEVs

ZFS has two scheduling systems: one for use when the system permits
many outstanding I/O requests, and another for when the system doesn't.
How many is many? That depends on your VDEVs and your host.

The sysctl vfs.zfs.vdev.max_active gives a flag level where ZFS
changes scheduling algorithms. FreeBSD’s default is 1000. For most
hosts, in the default configuration, this means that you can have up to
28 disks in a VDEV before switching algorithms. If you alter your I/O
queues, you change the math.

Hitting the limit means that ZFS changes how it schedules. Rath-
er than using the maximum values as a ceiling, it permits each disk a
number of outstanding requests equal to the minimum values.

sync read minimum: 10

async reads minimum: 3

sync write minimum: 10

async writes minimum: 1

scrub minimum: 1

166

Chapter 8: Performance

This means that each disk gets at least 25 outstanding requests. The
system can support up to 1000 outstanding requests by default, so any
additional requests get assigned in priority order.

If you have more than 40 storage providers in a single VDEV, even
the minimums exceed the total permitted on the system. Either change
vis.zfs.vdev.max_active to permit more requests or, preferably, rear-

range your VDEVs to contain a sane number of storage providers.

Asynchronous Writes and Transaction Group Sizes

Asynchronous writes work slightly differently. When the system is
mostly idle, and doesn’t have much to write, the system creates a single
asynchronous write request. (Technically, the minimum number is the
sysctl vfs.zfs.vdev.async_write_min_active, but there’s really no reason
to turn this above 1.) Data that’s in memory and waiting to be written
to disk is called “dirty data” As transaction groups increase in size and
frequency, ZFS schedules more and more concurrent writes. When the
system hits the maximum number of write requests, as defined by the
vfs.zfs.vdev.async_write_max_active sysctl, it starts artificially slowing
responses to write requests.

The sysctls vfs.zfs.vdev.async_write_active_min_dirty_percent
and vfs.zfs.vdev.async_write_active_max_dirty_percent control how
ZFS adds write requests. These are percentages of the allowed dirty
data on the system—the maximum size of a txg, or the value of the
sysctl vfs.zfs.dirty_data_max. At the minimum percentage and be-
low, the system uses the minimum number of write requests, leaving
more bandwidth for reads. At the maximum percentage and above,
the system uses the maximum number of write requests to try to keep
up with the amount of data that needs to be written. The number of

requests scales linearly between them.

167

Chapter 8: Performance

By default, the minimum percentage is 30 and the maximum is 60.
The minimum number of async write requests is I, and the maximum
is 10. How does this play out?

Assume a host has vfs.zfs.dirty_data_max set to 1 GB, because it
makes the math easy. One txg can be only 1 GB in size. If a host has up
to 300 MB of data ready to write (30 percent of 1 GB), it uses a single
write request. Each 30 MB of dirty data over 300 adds another write
request. If the host has 600 MB of data ready to write (60 percent of 1
GB), it queues 10 write requests.

In an ideal world, where the system is cruising along at normal
load, the size of a txg should go somewhere between the minimum
and maximum size. Our host with vfs.zfs.dirty_data_max should have
an amount of dirty data around 450 MB, plus or minus 150.

Maybe your VDEVs can handle more than 10 com-
mands queued to the disk, so you want to increase the
vis.zfs.vdev.async_write_max_active sysctl. Increasing this sysctl
beyond what your hardware can handle causes increased latency, so be
sure to monitor the effects of any changes under normal load. Chang-
ing the maximum number of outstanding write requests impacts
how quickly the system creates write requests, but it doesn’t affect the
percentages.

The percentages given are suitable for most loads, but if your
system’s latency fluctuates, you might investigate the number of

operations and the amount of latency.

168

Chapter 8: Performance

#pragma D option aggpack
#pragma D option quiet

fbt::vdev_queue_max_async_writes:entry
{se1f—>spa = args[0];
%bt::vdev_queue_max_async_writes:return
/self->spa && self->spa->spa_name == $$1/
i@ = Tquantize(args[1], 0, 30, 1);

tick-1s

{
printa(@);
clear(@);

b

fbt::vdev_queue_max_async_writes:return
/self->spa/

{
self->spa = 0;
}
Run this script with dtrace, giving it the name of a pool as an
argument.

dtrace -s q.d zroot

You’ll get bar graphs every second, displaying current latency and
the number of operations.

If you have varying latency and number of operations, you
might decrease vfs.zfs.vdev.async_write_active_min_dirty_percent
so that the system fires up additional write requests more
quickly. You could also increase the maximum percentage in
vis.zfs.vdev.async_write_active_min_dirty_percent, or increase the
amount of dirty data permitted on the system.

Hardware is all unique. If you dive this far into ZFS tuning, you
must twiddle these dials and see what they do on your particular
hardware.

169

Chapter 8: Performance
Throttling Writes

Programs that ask the kernel to write to disk won't proceed until the
kernel acknowledges the write request. There are exceptions—in a
multithreaded program, the write request probably blocks only a
single thread. Applications that run in multiple simultaneous process-
es, like Apache, will probably only have a single process block on I/O.
Still, in general, every program or some part of the program blocks on
I/O until the kernel acknowledges the write request.

In the most common situation, OpenZFS acknowledges receipt of
data as soon as the data is in a transaction group ready to write to disk.
This works well—until the underlying hardware can’t keep up with the
write requests. While you can’t log every packet on a saturated gigabit
line on a SATA-I drive, some people insist on trying.

When the storage providers start lagging behind the write re-
quests, OpenZFS artificially delays acknowledging receipt of data. The
requesting program won’t continue until the write request is acknowl-
edged. It hangs for a few milliseconds, or longer if needed. Effectively,
when a program pushes the kernel too hard, the kernel shoves back.

A one-line DTrace script can identify if your system is delaying

writes.

dtrace -n fbt::ds1_pool_need_dirty_delay:return’{ @
[args[1l] == 0 ? “no delay” : “delay”] = count(); }’

Run this script during a performance issue. Let it gather data for
“a while”—anything from several seconds to a couple minutes. Hit
CTRL-C to quit. You'll get the number of artificially delayed writes
and the number of not-delayed writes. If only a small fraction of your
writes are delayed, your performance problems lie elsewhere.

FreeBSD includes sysctls to tweak the delay values, or adjust latency

so it's more consistent, but if your hardware is backing up, you're clearly

170

Chapter 8: Performance

trying to stuft too much data through your storage I/O. Split your

writes between more devices, add hardware, or improve your hardware.

Scrub and Resilver Performance

Anyone who has worked in a large enterprise has suffered through
maintenance window policies that aren’t quite so well suited to mod-
ern hardware. Lucas has more than once delayed replacing a failed
hot-swappable hard drive during working hours, because the corpo-
rate maintenance policy declared that Sunday morning was the only
time such maintenance could be performed?®. If you're stuck with this
sort of policy, it’s vital that resilvers and scrubs finish quickly so that
you can get on with your day.

Scrubs and resilvers have built-in rate limiting so that these op-
erations don't interfere with normal operations. If any other process
wants I/O, these maintenance operations are delayed. Accelerating
scrubs and resilvers means disabling that rate limiting.

The rate limiting is a sysctl that gives an amount of time to put be-
tween each I/O operation for that process. This rate limiting only kicks
in while the disk is not idle.

The delay is measured in system ticks. The number of ticks in a
second is controlled by the kern.hz sysctl. This defaults to 1000, al-
though many virtual machines and laptop owners might set this to 100
in the hopes of improving performance.

What exactly does “not idle” mean? The disk must have no activity
for a number of ticks equal to the vfs.zfs.scan_idle sysctl.

The sysctl vfs.zfs.resilver_delay controls this artificial lag for

resilvers, while vfs.zfs.scrub_delay handles scrubs. By default scrubs

23 Not that Lucas remembers every single minute lost to such
daftness. Or keeps a list of people whose policies cost him weekends.
Or is waiting for Kneecappers Inc’s formal response to his Request For
Quote.

171

Chapter 8: Performance

wait for four ticks between operations, while resilvers lag for two. If
ZFS sleeps for four ticks between each I/0O, the maximum IOPS gen-
erated by a scrub on a non-idle pool would be 250 IOPS (1000 ticks
per second divided by four ticks per operation). Other processes get a
chance to perform I/O during these pauses. Running those operations
turther delays the scrub or resilver.

Other OpenZFS consumers, such as illumos, often use 100 ticks
per second. FreeBSD thus delays only one-tenth as long as most other
operating systems. This was probably an oversight rather than a delib-
erate design decision.

To eliminate the scrub or resilver delay, set these to 0, giving your
maintenance the same priority as any other process. Remember, these
delays only trigger if there is other activity on the pool.

You can control how much data the scrub sends to the I/O sched-
uler. Increasing the queue depth gives the ZFS I/O scheduler an
opportunity to run more effectively. The sysctl vfs.zfs.top_maxinflight
controls the scrub I/O queue depth. It defaults to 32, but some people
raise this as high as 2048. Increasing this too far will exhaust system
RAM, so monitor your system closely as you tune scrubs.

Each txg sets a minimum amount of time it spends on resilvering.
By default, a txg spends a minimum of 3000 milliseconds on resil-
vering. The vfs.zfs.resilver_min_time_ms controls how much time
the transaction group spends on resilvering I/O. This value is ignored
when there’s no resilvering going on.

No matter what you do, eventually you'll reach your hardware’s
limits for your workload. Rearranging bottlenecks is like rearranging
deck chairs on a cruise ship. On some ships, you make space for a nice
game of shuffleboard. If the ship is the Titanic, though, no amount of

shifting resources will keep you afloat.

172

Chapter 9: Tuning

A sysadmin learning ZFS usually spends time scratching her head over
ZFS space use. Combining pooled storage, datasets, snapshots, and
clones, makes ZFS space utilization very complicated, demanding a
whole chapter in FreeBSD Mastery: ZFS. When you start mucking with
the recordsize and volblocksize properties for databases and zvols,
space utilization can swerve straight into the Twilight Zone.

The volblocksize property gives the size of a storage block on a
zvol. The block size should represent the block size of the filesystem
used on the zvol. The default volblocksize is 8 KB, which would hold
two 4 KB or 16 512-byte filesystem sectors.

The recordsize property gives the maximum size of a logical block
in a ZFS filesystem dataset. The default recordsize is 128 KB, which
comes to 32 sectors on a disk with 4 KB sectors, or 256 sectors on a
disk with 512 byte sectors. The maximum record size was increased to
1 MB with the introduction of the 1arge blocks feature flag in 2015.
Many database engines prefer smaller blocks, such as 4 KB or 8 KB. It
makes sense to change the recordsize on datasets dedicated to such
files. Even if you don’t change the recordsize, ZFS automatically sizes
records as needed. Writing a 16 KB file should take up only 16 KB
of space (plus metadata and redundancy space), not waste an entire
128 KB record.

Interactions between block size and RAID-Z mean that the server’s
disks can suddenly fill up, even though they have only 25 percent of
the data youd expect them to hold.

Understanding why requires diving deeper into how ZFS allocates
blocks.

173

Chapter 9: Tuning
ZFS Stripe Allocation

Stripes are made up of sectors on the physical disk (or other provid-
er, such as a GELI). If your disk has 4 KB sectors, allocating 128 KB
requires 32 physical sectors.

Zpools store all parity information in disk sectors, or blocks. Each
level of parity requires a block for each stripe. A RAID-Z3 pool needs
three blocks for parity information for each chunk of disk allocated.

RAID-Z pools always allocate blocks in multiples of the parity lev-
el plus one. That is, RAID-Z1 allocates two blocks at a time, RAID-Z2
three blocks at a time, and RAID-Z3 four blocks at a time. This helps
ZFS prevent fragmentation and reduces the risk of wasting more
space. If a stripe doesn’t need that much space, ZFS pads it out to fill
the entire allocation. For usual stripe sizes, an extra sector or two per
file doesn’t matter. RAID-Z allocates in consistent-sized blocks so that
when a block is freed, it can be easily reused.

Consider allocating 8 KB of space on a RAID-Z2. While 8 KB re-
quires only four sectors, RAID-Z2 allocates only in multiples of three,
so it gets six blocks. You erase that file, and allocate for a 4 KB file in
the same sectors. This 4 KB file needs only three blocks. If RAID-Z
didn’t pad to multiples of N+1, youd get a single unused disk block
between the 4 KB file and the next file. This lone block, an orphaned
sector, could never be used.

Write and delete and write a bunch of files of different sizes, and
pretty soon your disk has a whole bunch of free space—but it’s all in
unusable one-block chunks. Your disk would be paralyzed.

Each file also needs other metadata to attach it to the ZFS tree,
giving the blocks containing the file, their hashes, and such. Each such
metadata block contains the information on many files, and can be

ignored for this discussion.

174

Chapter 9: Tuning

This all seems straightforward and unworrisome, but let’s see how
these facts interact with filesystems using 4 KB and 512-byte sectors.
In all of these examples, we're writing a single 8 KB block, either for a

zvol or a database.

Mirrors and Stripes

Mirrors and stripes need blocks of metadata to attach them to the ZFS
tree, but they don't require any additional redundancy blocks. Our 8
KB file uses two 4 KB or 16 512-byte disk sectors.

RAID-Z1

On a RAID-Z1 pool with 4 KB blocks, our 8 KB of data takes two
blocks. We also need a block for parity data, for a total of three blocks.
A RAID-Z1 pool allocates blocks in multiples of two (the parity level
plus one), so this gets rounded up to four. Assume you have a three-
drive RAID-Z1. If the disks have 4 KB blocks, this means you can only
fill the physical disks half full of data, rather than the two-thirds full
youd expect from a three-disk RAID-Z1. Padding eats the rest of that
space.

If this same three-drive RAID-Z1 pool uses disks with 512 byte
blocks, that same 8 KB takes 16 blocks. We need one parity block, for a
total of 17 blocks. The allocation must be divisible by two, so the pool
allocates one block for padding, bringing the total up to 18 blocks. You
can fill this pool up to 88 percent full of 8 KB blocks.

RAID-Z2

Our 8 KB of data again takes two blocks on a RAID-Z2 pool with 4 KB
blocks. We'll need two blocks for parity data, for a total of four blocks.
A RAID-Z2 pool allocates blocks in multiples of three (the parity

level plus one), so this gets rounded up to six blocks. On a four-drive
RAID-Z2, youd expect to be able to fill your disks half full of real data.

175

Chapter 9: Tuning

If you fill the pool with 8 KB files, though, you get only about 33 per-
cent full before padding eats up your space.

On a pool with 512 byte blocks, 8 KB of data gets 16 blocks. Two
blocks of parity data brings us to 18 blocks. ZFS reserves three blocks
at a time, so we don’t need any padding at all. You can completely fill

this pool with 8 KB blocks.
RAID-Z3

On a ZFS with 4 KB filesystem sectors, the data itself requires two
sectors. This pool uses triple parity, so you'll need three disk sectors
for parity data. This is a total of five sectors. ZFS allocates sectors only
in chunks of parity level plus one. RAID-Z3 lets you allocate sectors in
multiples of four, so ZFS allocates eight sectors for this 8 KB of data.
Eight sectors is 32 KB. You cannot fill this zvol more than 25 percent
full. You could completely fill a 200 GB zvol, so long as the pool has
800 GB of physical space for it.

On a ZFS with 512 byte filesystem sectors, the data itself requires
16 sectors. It needs another three sectors for parity data, for a total of
19 sectors. As allocations must be in multiples of four, this write gets
allocated 20 filesystem sectors. Twenty sectors is 10 KB, giving you 80

percent efficiency.

Striped Mirrors

Striped mirrors do not need any parity data. ZFS copies the data
wholesale to multiple storage providers. Striped mirrors don't pad data
to fit allocation sizes. A striped mirror is the most efficient place to
store data, but it has a different data protection model than RAID-Z.
Three-way mirrors give similar data protection to RAID-Z2—you
can lose two drives from each VDEV without losing any data—but you

get only 33 percent of the total space.

176

Chapter 9: Tuning
Changing the allocation size

Change recordsize Or volblocksize to 4 KB changes the calculations.
A smaller stripe size means more parity, which possibly means more
empty padding.

Look at our sample 8 KB write on RAID-Z3. It gets broken up into
two stripes. On a zvol with 4 KB blocks, each stripe needs four sectors,
again giving you 25 percent space efficiency. With 512-byte blocks,
each stripe needs 11 blocks, which gets rounded up to 12. You'll get
about 66 percent space efficiency.

The interaction among the stripe size (volblocksize), parity, and
padding is why you don’t have to perform these calculations with
filesystem datasets. A stripe size of 128 KB reduces allocation padding

to mere noise.

Recommendations

Before setting up a system for databases or zvols, carefully consider the
storage beneath the data storage pool. With the common recordsize
setting of 8 KB we strongly recommend, in order: a mirrored stripe
pool, a four-drive RAID-Z2 pool, or a three-drive RAID-Z pool.

If you're using zvols with a volblocksize of 4 KB to support virtual
machines, your choices are more limited. Mirrored stripe pools allow
you maximum space efficiency, while all other sizes cause at least some
space loss due to padding. Mirrors also have a great IOPS advantage
over RAID-Z.

Databases and ZFS
Many ZFS features are highly advantageous for databases. Every DBA
wants fast, easy, and efficient replication, snapshots, clones, tunable

caches, and pooled storage. While ZFS is designed as a general-pur-

pose filesystem, you can tune it to make your databases fly.

177

Chapter 9: Tuning

Databases usually consist of more than one type of file, and since
each has different characteristics and usage patterns, each requires
different tuning. We'll discuss MySQL and PostgreSQL in particular,
but the principles apply to any database software.

The most important tuning you can perform for a database is
the dataset block size, through the recordsize property. The ZFS
recordsize for any file that might be overwritten needs to match the
block size used by the application.

Tuning the block size also avoids write amplification. Write am-
plification happens when changing a small amount of data requires
writing a large amount of data. Suppose you must change 8 KB in the
middle of a 128 KB block. ZFS must read the 128 KB, modify 8 KB
somewhere in it, calculate a new checksum, and write the new 128 KB
block. ZES is a copy-on-write filesystem, so it would wind up writing a
whole new 128 KB block just to change that 8 KB. You don’t want that.
Now multiply this by the number of writes your database makes. Write
amplification eviscerates performance.

While this sort of optimization isn’t necessary for many of us, for
a high-performance system it might be invaluable. It can also affect
the life of SSDs and other flash-based storage that can handle a limited
volume of writes over their lifetime. Of course the different database
engines don't make this easy, and each has different needs. Journals,
binary replication logs, error and query logs, and other miscellaneous
files also require different tuning.

Before creating a dataset with a small recordsize, be sure you un-
derstand the interaction between VDEV type and space utilization. In
some situations, disks with the smaller 512-byte sector size can pro-
vide better storage efficiency. It is entirely possible you may be better
off with a separate pool specifically for your database, with the main

pool for your other files.

178

Chapter 9: Tuning

For high-performance systems, use mirrors rather than any type of
RAID-Z. Yes, for resiliency you probably want RAID-Z. Choose your
pain.**

All Databases

Enabling 124 compression on a database can, unintuitively, actually
decrease latency. Compressed data can be read more quickly from

the physical media, as there is less to read, which can result in shorter
transfer times. With 1z4’s early abort feature, the worst case is only a
few milliseconds slower than opting out of compression, but the bene-
fits are usually quite significant. This is why ZFS uses 1z4 compression
for all of its own metadata and for the L2ZARC. In the near future when
the Compressed ARC feature lands in OpenZFS, enabling compres-
sion on the dataset will also allow more data to be kept in the ARC, the
fastest cache in ZFS.

In a production case study done by Delphix, a database server with
768 GB of RAM went from using more than 90 percent of its memory
to cache a database to using only 446 GB to cache 1.2 TB of com-
pressed data. Compressing the in-memory cache resulted in a signif-
icant performance improvement. As the machine could not support
any more RAM, compression was the only way to improve.

ZFS metadata can also affect databases. When a database is rapid-
ly changing, writing out two or three copies of the metadata for each
change can take up a significant number of the available IOPS of the
backing storage. Normally, the quantity of metadata is relatively small
compared to the default 128 KB record size. Databases work better
with small record sizes, though. Keeping three copies of the metadata
can cause as much disk activity, or more, than writing actual data to

the pool.

24 Sysadmins don’t get to choose between the Lady and the Tiger.
We get to choose between Angry Tiger and Hungry Tiger.

179

Chapter 9: Tuning

Newer versions of OpenZES also contain a redundant_metadata
property, which defaults to all. This is the original behavior from pre-
vious versions of ZFS. However, this property can also be set to most,
which causes ZFS to reduce the number of copies of some types of
metadata that it keeps.

Depending on your needs and workload, allowing the database en-
gine to manage caching might be better. ZFS defaults to caching much
or all of the data from your database in the ARC, while the database
engine keeps its own cache, resulting in wasteful double caching. Set-
ting the primarycache property to metadata rather than the default all
tells ZFS to avoid caching actual data in the ARC. The secondarycache
property similarly controls the L2ZARC.

Depending on the access pattern and the database engine, ZFS
may already be more efficient. Use a tool like z£smon from the zfs-tools
package to monitor the ARC cache hit ratio, and compare it to that of
the database’s internal cache.

Once the Compressed ARC feature is available, it might be wise to
consider reducing the size of the database’s internal cache, and instead
letting ZFS handle the caching. The ARC might be able to fit signifi-

cantly more data in the same amount of RAM than your database can.

MySQL - InnoDB/XtraDB

InnoDB became the default storage engine in MySQL 5.5 and has
significantly different characteristics than the previously used My-
ISAM engine. Percona’s XtraDB, also used by MariaDB, is similar

to InnoDB. Both InnoDB and XtraDB use a 16 KB block size, so

the ZFS dataset that contains the actual data files should have its
recordsize property set to match. We also recommend using MySQLs

innodb_one file per_ table setting to keep the InnoDB data for each

180

Chapter 9: Tuning

table in a separate file, rather than grouping it all into a single ibdata
file. This makes snapshots more useful and allows more selective resto-
ration or rollback.

Store different types of files on different datasets. The data files
need 16 KB block size, 124 compression and reduced metadata. You
might see performance gains from caching only metadata, but this also

disables prefetch. Experiment and see how your environment behaves.

zfs create -o recordsize=16k -o compress=1z4 \
-0 redundant_metadata=most \
-0 primarycache=metadata mypool/var/db/mysql

The primary MySQL logs compress best with gzip, and don’t need

caching in memory.

zfs create -o compress=gzipl -o primarycache=none \
mysql/var/log/mysql

The replication log works best with 1z4 compression.

zfs create -o compress=1z4 \
mypool/var/log/mysql/replication

Tell MySQL to use these datasets with these

/usr/local/etc/my.cnf settings.

data_path=/var/db/mysql
log_path=/var/log/mysql
binlog_path=/var/log/mysql/replication

You can now initialize your database and start loading data.

MySQL - MylSAM

Many MySQL applications still use the older MyISAM storage engine,
either because of its simplicity or just because they have not been con-
verted to using InnoDB.

MyISAM uses an 8 KB block size. The dataset record size should
be set to match. The dataset layout should otherwise be the same as for
InnoDB.

181

Chapter 9: Tuning

PostgreSQL

ZFS can support very large and fast PostgreSQL systems, if tuned
properly. Don'’t initialize your database until you've created the needed
datasets

PostgreSQL defaults to using 8 KB storage blocks for everything. If
you change PostgreSQLSs block size, you must change the dataset size
to match.

On a default FreeBSD install, PostgreSQL goes in
/usr/local/pgsql/data. For a big install, you probably have a separate

pool for that data. Here I'm using the pool pgsq1 for PostgreSQL.

zfs set mountpoint=/usr/local/pgsql pgsql
zfs create pgsql/data

Now we have a chicken-and-egg problem. PostgreSQLs database
initialization routine expects to create its own directory tree, but we
want particular subdirectories to have their own datasets. The easiest
way to do this is to let PostgreSQL initialize, and then create datasets

and move the files.

/usr/local/etc/rc.d/postgresql oneinitdb

The initialization routine creates databases, views, schemas, con-
figuration files, and all the other components of a high-end database.
Now you can create datasets for the special parts.

PostgreSQL stores databases in /usr/local/pgsql/data/base. The
Write Ahead Log, or WAL, lives in /usr/local/pgsql/data/pg xlog.
Move both of these out of the way.

cd /usr/local/pgsql/data
mv base base-old
mv pg_xlog pg_xlog-old

Both of these use an 8 KB block size, and you would want to snap-

shot them separately, so create a dataset for each. As with MySQL, tell

182

Chapter 9: Tuning

the ARC to cache only the metadata. Also tell these datasets to bias

throughput over latency with the 1ogbias property.

zfs create -o recordsize=8k \
-0 redundant_metadata=most \
-0 primarycache=metadata logbias=throughput \
pgsql/data/pg_xlog

zfs create -o recordsize=8k \
-0 redundant_metadata=most \
-0 primarycache=metadata logbias=throughput \
pgsql/data/base

Copy the contents of the original directories into the new datasets.

cp -Rp base-old/* base
cp -Rp pg_xlog-old/* pg_xlog

You can now start PostgreSQL.

Tuning for File Size

ZFS is designed to be a good general-purpose filesystem. If you have
a ZFS system serving as file server for a typical office, you don't really
have to tune for file size. If you know what size of files youre going to

have, though, you can make changes to improve performance.

Small Files

When creating many small files at high speed in a system without a
SLOG, ZFS spends a significant amount of time waiting for the files
and metadata to finish flushing to stable storage.

If you are willing to risk the loss of any new files created in the last
five seconds (or more if your vfs.zfs.txg.timeout is higher), setting the
sync property to disabled tells ZFS to treat all writes as asynchronous.
Even if an application asks that it not be told that the write is complete
until the file is safe, ZFS returns immediately and writes the file along
with the next regularly scheduled txg.

A high-speed SLOG lets you store those tiny files both synchro-
nously and quickly.

183

Chapter 9: Tuning
Big Files

ZFS recently added support for blocks larger than 128 KB via the
large block feature. If you're storing many large files, certainly con-
sider this. The default maximum block size is 1 MB.

Theoretically, you can use block sizes larger than 1 MB. Very few
systems have extensively tested this, however, and the interaction with
the kernel memory allocation subsystem has not been tested under
prolonged use. You can try really large record sizes, but be sure to file a
bug report when everything goes sideways. The sysctl vfs.zfs.max_re-
cordsize controls the maximum block size.

Once you activate 1arge blocks (or any other feature), the pool
can no longer be used by hosts that do not support the feature. Deac-
tivate the feature by destroying any datasets that have ever had their
recordsize set to larger than 128 KB.

Storage systems struggle to balance latency and throughput. ZFS
uses the logbias property to decide which way it should lean. ZFS uses
a logbias of latency by default, so that data is quickly synched to disk,
allowing databases and other applications to continue working. When
dealing with large files, changing the 1ogbias property to throughput
might result in better performance. You must do your own testing and

decide which setting is right for your workload.

The Worst of Both Worlds: Bittorrent

Bittorrent combines the worst parts of large files and the worst parts
of small files all in one convenient package. Bittorrents out-of-order
write pattern can cause a great deal of dataset fragmentation. Plus,
Bittorrent’s 16 KB block size can lead to write amplification if the

recordsize of the dataset isn’t also 16 KB.

184

Chapter 9: Tuning

The best solution to both of these issues is to actually have two
datasets. The dataset where the files are stored during downloading

uses the smaller record size.

zfs create -o recordsize=16k \
-0 redundant_metadata=most -o compress=off \
mypool/torrents/in-progress

The dataset where you store completed torrents should have a
larger block size. Moving files from one to the other defragments the
files, resulting in improved read performance and avoiding pool frag-
mentation. Most torrent clients support using a separate directory for
in-progress downloads, so this should not even require any action on
your part aside from creating the two datasets.

If you download large files, like operating system ISOs, you might
also consider using a recordsize of 1 MB to further increase perfor-

mance and amortize metadata and redundancy.

zfs create -o recordsize=1m mypool/torrents
Tell your torrent client about these directories and you’ll be ready

to go.
Short Stroking

Regular spinning disks have specific characteristics that can cause
uneven performance. Reads and writes to the beginning of the disk
can be significantly faster (higher throughput) than writes later on the
disk. The slowest aspect of a regular spinning disk is seek time, the time
it takes for the drive to physically reposition the read/write head over
the sector you want to read or write. When data is scattered all over
the disk, this can significantly decrease performance.

Short Stroking is the process of using only a small subset of a disk’s
capacity, usually a partition of only the fastest 10-30% of a disk. Now

that the head only ever has to travel over a small portion of the disk’s

185

Chapter 9: Tuning

surface, the average seek time will be significantly less. In the future,
if more storage space is required, the partition can simply be resized
and ZFS will grow the pool. Remember that running ZFS low on disk
space increases fragmentation, which can be much worse for perfor-
mance than a higher average seek time.

You now have the tools to configure your datasets, pools, and
hardware in the best possible manner. Now let’s poke at some more

obscure corners of ZFS.

186

Chapter 10: ZFS Potpourri

This chapter covers small topics that didn't quite fit anywhere else.
Splitting Mirrors

Combining storage into pools is one of ZFS’ core features. But ZFS lets
you perform the same action in reverse—splitting mirrored pools into
multiple identical pools. If you want to more literally clone a machine,
or pull off a copy of a mirror to run a backup, or perform some other
sort of mad computer science, zpool split is your friend.

We'll demonstrate adding disks to a mirrored pool, then split the
pool into duplicates. You could perform the same task in reverse: pool
the disks off a mirror, then add them back when youre done with the
duplicate. We recommend maintaining at least two providers in each

mirror VDEV at all times, however.

Make Mirrors Deeper

A mirror’s depth describes how many copies of data the mirror in-
cludes. This pool, a typical striped mirror, contains two mirrors of two
disks each.

zpool status db

NAME STATE READ WRITE CKSUM

db ONLINE 0O 0 O
mirror-0 ONLINE 0 0 0
gpt/zfsO ONLINE 0O 0 O
gpt/zfsl ONLINE 0 0 0
mirror-1 ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0
gpt/zfs3 ONLINE 0O 0 O

Chapter 10: ZFS Potpourri

I want to make this pool deeper, adding an additional disk to each
VDEV. Use the zpool attach command with the pool name, a device
already in the target VDEV, and the new device.

zpool attach db gpt/zfsl gpt/zfs4
zpool attach db gpt/zfs3 gpt/zfs5
In between running these two commands, the pool has one mirror

of three devices and one mirror of two devices. At the end, the mirror
looks like this.

NAME STATE READ WRITE CKSUM
db ONLINE 0O 0 O
mirror-0 ONLINE 0 0 0
gpt/zfsO0 ONLINE 0O 0 O
gpt/zfsl ONLINE 0 0 0
gpt/zfs4 ONLINE 0 0 0
mirror-1 ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0
gpt/zfs3 ONLINE 0O 0 O
gpt/zfs5 ONLINE 0O 0 O

Once the pool finishes resilvering the drives, you can split the pool.

Splitting the Pool

Use the zpoo1 sp1lit command to pull a device from each VDEV to
create the new pool. The command has two mandatory arguments: the
name of the pool you want to split and a name for the newly created
pool. Here we split the pool db, creating an identical copy in the pool

db2.
zpool split db db2

ZFS removes the device most recently added to each mirror to cre-
ate a new pool. Splitting a pool does not automatically import the new

pool. Once you import it, the split pool looks like this.

188

Chapter 10: ZFS Potpourri
zpool status db2

NAME STATE READ WRITE CKSUM

db2 ONLINE 0O 0 o
gpt/zfs4 ONLINE 0O 0 O
gpt/zfs5 ONLINE 0O 0 O

This pool contains two striped disks.

In the original pool, the striped pair of three-way mirrors has be-
come a striped pair of two-disk mirrors.

If you're keeping this split-off pool around for any length of time,
you should add more disks to create proper mirrors. You might not
add another set of disks if youre pulling backups off of these drives,
though.

SnapSpec

Snapshots are great—but they breed like tribbles™. Once you're accus-
tomed to using snapshots to deal with system administration issues,
you'll find yourself dealing with disk space shortages because of all the

snapshots you have. Removing a single snapshot is easy.

zfs destroy mypool/dataset@snapshotname

But what if you want to destroy 10 snapshots at once? Identifying
each snapshot and specifying each on the command line is incredibly
tedious.

ZFS lets you identify multiple neighboring snapshots with a snap-
spec. You can't use a snapspec to specify multiple disparate snapshots,
but if you want to blow away daily snapshots @monday through @
saturday, a snapspec is your friend.

Any time you use a snapspec, we recommend first running your
command with -n and -v. The -v flag tells zfs(1) to print what the
command does in more detail. The -n tells it to not to actually do any-

thing. Combined, they say “give me more detail on exactly what this

189

Chapter 10: ZFS Potpourri

command will do” As you can assign arbitrary snapshot names, it’s
best to verify that a needed but forgotten snapshot won't be caught up
in a snapshot massacre. Once you know exactly which snapshots the

command will destroy, rerun the command without the -n.

Snapshot Range

The most basic snapspec is fromsnap%tosnap. It destroys every snap-

shot between the two indicated, including themselves:
zfs destroy -vn mypool/dataset@one%three
would destroy mypool/dataset@one

would destroy mypool/dataset@two
would destroy mypool/dataset@three

Did you slip a @beforeUpgrade snapshot in between the numbered

snaps? This is why you use -n first.
Specify by Age

You can use @%foo to destroy snapshot @foo and anything older than
it.

zfs destroy -vn mypool/dataset@%four
would destroy mypool/dataset@one

would destroy mypool/dataset@two

would destroy mypool/dataset@three
would destroy mypool/dataset@four

Similarly, use @foo% to destroy @foo and anything newer than
itself:

zfs destroy -vn mypool/dataset@six%
would destroy mypool/dataset@six
would destroy mypool/dataset@seven
would destroy mypool/dataset@eight
would destroy mypool/dataset@nine
would destroy mypool/dataset@ten

That’s much easier than re-entering each snapshot name.

190

Chapter 10: ZFS Potpourri

Snapshot Slaughter

Sometimes, you want to destroy all the snapshots. Use @% to burn it

all down.

zfs destroy -vn mypool/dataset@%
would destroy mypool/dataset@one
would destroy mypool/dataset@two
Wou]d destroy mypool/dataset@ten

Now you can start accumulating snapshots all over again.

If you've taken recursive snapshots, you probably want to burn the
whole tree down. Add -r to eradicate snapshots from a dataset and all
its children. Here, we've finished the upgrade and think we're happy
with the results.

zfs destroy -nvR pgsql/data@%

would destroy pgsql/data@beforeupgrade

would destroy pgsql/data/base@beforeupgrade
would destroy pgsql/data/pg_xlog@beforeupgrade

But, you know ... we think we’ll hold on to those backups just a

little longer.

Recovering Destroyed Pools
There’s nothing quite like the moment when you realize, “Wait, that
command is a horrible mistake” and you try to stop, but you know that
the nerve impulses don’t have time to race down from your brain to
your hand before your accursed pinky finishes pressing the extzr key.
One place that can happen is when you destroy a ZFS pool. And
the ZFS designers were very aware of exactly this syndrome.
The zpool destroy command doesn't actually damage any data
on the underlying disks. Instead, it marks the pool as destroyed. A
zpool list skips pools marked as destroyed. If you haven’t written to
or physically removed the disks underlying the destroyed pool, you
can recover the pool. Use the - flag to zpool import to view destroyed

pools.

191

Chapter 10: ZFS Potpourri

zpool 1import -D
You'll get two kinds of responses, for recoverable and non-recover-

able pools.

Recoverable Pools

Here’s a pool that you can easily recover.

zpool 1import -D
pool: db2
id: 5552158746006792385
state: ONLINE (DESTROYED)
action: The pool can be imported using its name or
numeric identifier.
config:
db2 ONLINE
gpt/zfs4 ONLINE
gpt/zfs5 ONLINE

This destroyed pool, db2, looks like a normal, healthy pool. The
state says it's pEsTROYED, but the output shows the two providers in the
pool’s single VDEV, and they’re both online.

To import a destroyed pool, run zpool import -D and give the

pool name. Let’s reactivate pool ab2.

zpool import -D db2

Other pools are not so easy.

192

Chapter 10: ZFS Potpourri
Non-Recoverable Pools

Other destroyed pools look more like this.

zpool 1import -D
pool: db
id: 13121127349626326109
state: UNAVAIL (DESTROYED)
status: One or more devices are missing from the
system.
action: The pool cannot be imported. Attach the missing
devices and try again.
see: http://illumos.org/msg/ZFS-8000-6X

config:
db UNAVAIL missing device
mirror-1 DEGRADED
6883971156539624736 UNAVAIL cannot open
gpt/zfs3 ONLINE

Additional devices are known to be part of this
pool, though their exact configuration cannot be
determined.

The pool state here is unava1z, meaning you can’t import it. The
configuration shows that one of the providers is also unavarr. ZFS can-
not find a storage provider with the ZFS-specific GUID for this pool.
Perhaps you've reused that disk, or unplugged it from the chassis.

What’s most vexing in this example? This pool is a two-provider
mirror. You have a perfectly good copy of the data on the surviving
provider. But the pool is incomplete, so no, you can’t import it. Go
looking for that disk you pulled out.

Another common case is when a pool no longer has a SLOG
device. SLOG-suitable hardware normally gets put straight back into
use on another pool or discarded. To tell zpool(8) to disregard the
missing SLOG and import the pool anyway, use zpoo1 -m.

193

Chapter 10: ZFS Potpourri

Rename Pool at Recovery

Sometimes you want to rename a pool when you un-destroy it. Per-
haps it has the same name as a live pool, or the function of the pool
has changed. To rename a pool when you import it, add the new name
after the pool’s old name. Here we import the destroyed pool drz, and

rename it olddb2.

zpool import -D db2 olddb2

It’s otherwise the same as renaming an imported pool.

Cloning Machines

ZFS is a perfectly sensible choice for virtual machines. While losing di-
rect access to the disks means that ZFS can’t handle error detection for
you, features such as snapshots and replication make ZFS worthwhile.

Most virtualization systems offer to clone systems for you, some-
times disguised as a standard template you can deploy. If you copy a
disk image containing a ZFS pool to a new virtual machine, though,
your virtual machine is a copy of the original. This means that some
items that should be globally unique, no longer are. Will this cause
problems? Not on a stand-alone virtual machine. If you're going to
move disk images between virtual machines, though, you’ll want to
change the GUID of each VM’s pools.

The guid property contains a pool’s GUID. Here we get the GUID

of the pool an2.

zpool get guid db2
NAME PROPERTY VALUE SOURCE
db2 guid 5552158746006792385 default

To generate a new pool GUID, use zpool reguid. Give the pool

name as an argument.

194

Chapter 10: ZFS Potpourri

zpool reguid db2

zpool get guid db2
NAME PROPERTY VALUE SOURCE
db2 guid 7662460469377566669 default

You can now attach the disk image from one virtual machine to
another without making ZFS have a hissy fit.
Giving a pool a new GUID can also help if for some reason zdb(8)

cannot find your pool.? 62728

Case-Insensitive Filesystem

Some clients (OS X in particular) expect filesystems to be case-in-
sensitive. You can tell a ZFS dataset to be case-insensitive with the
casesensitivity property.

The casesensitivity property defaults to sensitive, which is
traditional Unix-style case sensitive. If you set it to mixed, ZFS can
support both case-sensitive and case-insensitive requests. Setting
casesensitivity to insensitive means that ZFS will be completely
case-insensitive.

You can set this property only at dataset creation time.

zfs create -o casesensitivity=mixed samba/share
To change casesensitivity on an existing dataset, create a new

dataset with the property set correctly, and then copy the files over.

25 This once happened to Jude, but Lucas is certain that it was
actually operator error.

26 Actually, Jude thinks it might be related to upgrading a pool
from an older version, as it happened recently on two more machines
he was running zdb on for writing this chapter of the book

27 Just because you make the same mistake multiple times, Jude,
doesn’t mean it’s not an error.
28 At least Jude provided the solution, so when Lucas inevitably

runs into this problem he’ll know what to do: curse Jude. For the re-
cord, the only mistake Jude made was writing this book with such a...
swell guy.

195

Chapter 10: ZFS Potpourri

ZFS Deep Dive: zdb(8)

To better understand what’s happening inside ZFS, it helps to be able
to peek behind the curtain. Examining the internal state of ZFS can
help you understand why the system is performing or behaving the
way it is. Even if youre not terribly interested in how the sausage is
made, this section might contain some points of interest.

Many people read the ZES chapter of The Design and Implemen-
tation of the FreeBSD Operating System, 2nd Edition (Addison-Wes-
ley Professional, 2014), to learn about ZFS’s internal data structures.
While the Dé»I book provides a great deal of information, the ability
to study those data structures for actual files on your system can help
everything make sense.

The suite of ZFS tools available in FreeBSD includes zdb(8), the
ZFS debugger. The zdb(8) man page clearly states that “The output of
this command in general reflects the on-disk structure of a ZFS pool,
and is inherently unstable. The precise output of most invocations
is not documented, a knowledge of ZFS internals is assumed.” The
output is based on what is on the disk and zdb(8)’s simulation of what’s
in memory at any given instant. The interpretation is largely left up to
the operator. If you really dig into zdb(8), you probably need a copy of
DéI handy for reference.”

The zdb(8) command has a large number of flags. Most all of these
can be specified multiple times, each increasing the verbosity of the

information.

Block Statistics

The zdb(8) utility can examine the breakdown of how blocks are

allocated in the pool. We'll start by examining a very small pool from

29 Hey, we recommend their book, they recommend ours. Or at
least buy a round. It works out.

196

Chapter 10: ZFS Potpourri

a virtual machine, and then increasingly larger pools. Use the - flag
and the pool name to get block statistics for that pool.

Analyzing block statistics takes a lot of memory, as zdb(8) must
track every block as it calculates the various statistics. A very large
pool might require more memory than the host has, and eventually
the kernel’s out-of-memory killer will terminate zdb in self-defense. Be
careful running this on a production system, as zdb(8) can grind the
system to a halt.

Let’s start with a small one-disk pool from a virtual machine.

zdb -b mypool
Traversing all blocks to verify nothing leaked ...

925M completed (473MB/s) estimated time remaining: Ohr 00min 0Osec
No leaks (block sum matches space maps exactly)

bp count: 85010

ganged count: 0

bp logical: 2159973376 avg: 25408

bp physical: 897291776 avg: 10555 compression: 2.41
bp allocated: 1159446528 avg: 13638 compression: 1.86
bp deduped: 0 ref>1: 0 deduplication: 1.00

SPA allocated: 1159446528 used: 5.72%

additional, non-pointer bps of type 0: 5873
Dittoed blocks on same vdev: 9645

The first part of the statistics covers block pointers, the blocks that
contain metadata and indexing details for data blocks. The bp count
field shows how many block pointers the pool has—here, 85,010.

The bp logical field shows the total amount of logical space, or
the actual file sizes, of those blocks. These block pointers point to
2,159,973,376 bytes, or about 2 GB. The average block pointer handles
about 25,408 bytes.

The bp physical amount shows how much space these blocks con-
sume on the disk. This is where the advantages of compression show
up. While we have about 2 GB of files, this shows were using about
800 MB of disk space for files. But that’s not quite the whole story.

The bp allocated number gives the actual real-world disk space
consumption. Sector size, padding, and parity mean that we don’t

197

Chapter 10: ZFS Potpourri

actually get all of the savings that compression provided. This serv-
er gets a real-world compression factor of 1.86, fitting that 2 GB in
roughly 1.1 GB—still significant.

Here’s a slightly larger pool from an active server with only a single
disk VDEV:

bp count: 1877355

bp logical: 40057641984 avg: 21337

bp physical: 36864202240 avg: 19636 compression: 1.09
bp allocated: 40843472896 avg: 21755 compression: 0.98
bp deduped: 0 ref>1: 0 deduplication: 1.00
SPA allocated: 40843472896 used: 8.34%

This pool contains a lot of non-compressible data. The bp physical
entry says that we eke out a compression factor of 1.09. Look further
down at the allocated space, though. Once you add in metadata and
padding overhead, we actually get 0.98 compression. The compression
almost compensates for space lost due to metadata.

Let’s examine a bigger pool, a four-disk RAID-Z1.

bp count: 243197
ganged count: 0
bp logical: 15037198336 avg: 61831

bp physical: 10384008704 avg: 42697 compression: 1.45
bp allocated: 15081398272 avg: 62013 compression: 1.00
bp deduped: 0 ref>1: 0 deduplication: 1.00
SPA allocated: 15081398272 used: 0.19%

With a four-disk RAID-Z1, youd expect to lose 25 percent of your
physical space to parity. It has about 15 GB of data, but compression
squeezes that down to about 10 GB. Once you look at the allocated

space, though, compression and RAID-Z metadata even each other

out.

Here’s another four-disk RAID-Z1, but with more data:
bp count: 8782753
bp logical: 845698973696 avg: 96290
bp physical: 838824515072 avg: 95508 compression: 1.01
bp allocated: 1173701099520 avg: 133637 compression: 0.72
bp deduped: 0 ref>1: 0 deduplication: 1.00

SPA allocated: 1173701099520 used: 29.70%
This stores about 845 GB of data. Once you add in the RAID-Z1

metadata, though, it allocates more than a terabyte.

198

Chapter 10: ZFS Potpourri
Detailed Block Statistics

If those numbers didn't make your brain climb out of your ear canal
and fling itself to its death, add a second -b to get detailed block statis-
tics.
zdb -bb mypool

You'll get columns for the number of blocks (BLOCKY), the logical
size (LSIZE), physical size (PSIZE), allocated size (ASIZE), average
(avg), compression (comp), and percentage of total (% Total), for each
different type of block pointer. And there are dozens of different types
of block pointer. The output below presents only a few.

Blocks LSIZE PSIZE ASIZE avg comp %Total Type

9 68.0K 68.0K 68.0K 7.55K 1.00 0.01 ZIL intent Tog
70.3K 1.87G 844M 1.01G 14.7K 2.26 93.43 ZFS plain file
7.12K 9.6M 2.53M 24.7M 3.47K 3.78 2.23 ZFS directory

272 174K 38.0K 608K 2.23K 4.58 0.05 ZFS user/group used
244 315K 59.0K 1.38M 5.80K 5.34 0.13 DSL deadlist map

6 60.0K 11.0K 72.0K 12.0K 5.45 0.01 deferred free

8 66.0K 10.0K 84.0K 10.5K 6.60 0.01 other

"83.0K 2.01G 856M 1.08G 13.3K 2.41 100.00 Total

What do each of these block pointer types mean? That’s where we
point you to Dé>]. Here are a few that might interest you, though.

The last line gives the totals. This pool has about 83,000 blocks
for pointers, representing 2.01 GB of data. This data uses 856 MB of
logical space, but needs 1.08 GB once ZFS adds in the padding and
metadata.

The ZIL gives information about the ZFS intent log’s space usage.
Remember, even if you don’t have a separate ZIL, each pool dedicates
space for the ZIL. Our ZIL is using nine blocks, representing 68 KB of
data. This information can help you size a separate ZIL, or determine
if one is needed.

The ZFS plain file and ZFS directory lines show the amount of disk
space used on files and directory entries. Of the 2.01 GB stored on

199

Chapter 10: ZFS Potpourri

this pool, files use 70,300 block pointers for 1.87 GB, and 7,120 block
pointers for 9.6 MB of directory entries.

This pool uses 272 blocks, or 174 KB, just to keep track of user and
group usage information in ZFS user/group used.

At DSL deadlist map, we see the dead list of blocks removed after the
last snapshot has been taken. The dead list uses 244 blocks, or 315 KB.

The deferred free line shows how many blocks are scheduled to be
released, but haven't been yet.

Finally, there’s an other line. Because every accounting system

requires an “other” bucket.

ZFS Configuration

You can view the system’s ZFS configuration with zdo -c. If you add
the name of a pool, zdb pulls the information from the pool. If you

skip the pool, zdb(8) displays everything from zpoo1.cache.

zdb -C media
MOS Configuration:
version: 5000
hame: ‘media’
state: 0
txg: 15612202
pool_guid: 16862785426161824963
hostid: 2655503804
hostname: *’
vdev_children: 1
vdev_tree:
type: ‘root’
id: 0
guid: 16862785426161824963
create_txg: 4

This gives basic detail for the pool media. Some of this informa-
tion is fairly obvious, such as the pool’s GUID and the hostid if the
host using this pool. This pool has had 15,612,202 transaction groups
committed to it. The vdev_children field shows how many VDEVs are
part of this pool.

200

Chapter 10: ZFS Potpourri

Pool VDEV information is displayed as a tree, listing each VDEV
and then the disks in that VDEV. Here’s a VDEV in the media pool.

children[0]:

type: ‘raidz’

id: 0

guid: 8519167489302904218
nparity: 2
metaslab_array: 30
metaslab_shift: 37

ashift: 12
asize: 17990635487232
is_log: O

create_txg: 4

You remember specifying an ashift when creating a VDEV?
Here’s where you find out what that was. You'll also see the VDEV’s
GUID and VDEV type, as well as details on other ZFS internals.

Each disk in the VDEV also gets an entry.

children[0]:
type: ‘disk’
id: 0

guid: 14921375587032757624
path: ‘/dev/adalp3’
phys_path: ‘/dev/adalp3’
whole_disk: 1

DTL: 8495

Create_txg: 4

This tells you about the ZFS GUID, the FreeBSD device node, and
some internals.
At the very bottom, you’ll see a list of read-only features on this

pool.

features_for_read:
com.delphix:hole_birth
com.delphix:embedded_data

If you use a second -c along with a pool name, zdb retrieves both
the on-disk and the cached data so you can compare them. Should
these differ? Not really.

201

Chapter 10: ZFS Potpourri
Dataset Information

Examining a dataset in detail can also provide a lot of information,
and help visualize the internals of the filesystem.

Dataset Basics

To see a dataset’s basic internal information, use -4 and the dataset
name. Here we examine a dataset on the media pool used in the previ-

ous section.

zdb -d media/svn/base
Dataset media/svn/base [ZPL], ID 4778, cr_txg 4820082,
3.82G, 259339 objects

That did not provide very much information. The cr_txg field
shows the transaction group where this dataset was created, number
4,820,082 of 15,612,202 on this pool. It holds 3.82 GB worth of data,
and has 259,339 objects in it. Objects include files and directories, but
also metadata, ACLs, and every other type of data ZFS can hold.

Dataset Detail

You want more detail? You got it. Add a second -d and hang on to your
hat. You might want to run this under script(1) or another terminal
recording program.

zdb -dd media/svn/base

Dataset media/svn/base [ZPL], ID 4778, cr_txg 4820082, 3.82G, 259339

objects
Object 1Tv1 1iblk dblk dsize Tsize %full type

0 7 16K 16K 417M 632M 20.04 DMU dnode

-1 1 16K 1K 0 1K 100.00 ZFS user/group used
-2 1 16K 1K 0 1K 100.00 ZFS user/group used
1 1 16K 1K 16K 1K 100.00 ZFS master node

2 1 16K 512 16K 512 100.00 SA master node

9 1 16K 16.5K 16K 16.5K 100.00 ZFS directory
11 3 16K 128K 43.3M 155M 82.49 ZFS plain file
13 1 16K 512 8K 512 100.00 ZFS plain file

How long does this go on? Well...

1294291 1 16K 3.50K 8K 3.50K 100.00 ZFS plain file
1294324 1 16K 4K 8K 4K 100.00 ZFS plain file
1294328 1 16K 4.50K 8K 4.50K 100.00 ZFS plain file

202

Chapter 10: ZFS Potpourri

This dataset has a whole bunch of files, directories, and related
stuff in it.

A few of the columns might be of interest to sysadmins. The first
column is the object number. The dblk column is the record size used
for this object. The Isize is the logical size of the object, what most of us
think of when we say “file size”

The first line gives us the basic information. After that, though, we
see details on every object on the dataset. While the first few objects
are always ZFS metadata, later objects are mostly files and directories.

You'll see the values assigned to the object’s data structures.

Examining Specific Objects

This list of dataset objects might have its interest, but what is each of
those objects? Examine an object by specifying its object number after
the dataset name. Here, we turn zdp all the way up, and investigate

object 1,294,328 on the media/svn/base dataset.

zdb -ddddd media/svn/base 1294328

Dataset media/svn/base [ZPL], ID 4778, cr_

txg 4820082, 3.82G, 259339 objects, rootbp
DVA[0]=<0:bc346503000:3000> DVA[1]=<0:f005fc91000:3000>
[LO DMU objset] fletcher4 uncompressed LE contiguous
unique double size=800L/800P birth=15618812L/15618812P
fi11=259339 cksum=1003e8933¢c:10304c47fe66:af75e77a47ed-
d:5dccld2be9f01d9

We start with details about the dataset, such as the creation txg
and number of objects, exactly as we saw on less intensive zdb queries.
We also get a bunch more details, such as the current checksums and
other things that only make sense if you're studying Déx1.

Then we get some detail on the file itself.

203

Chapter 10: ZFS Potpourri

Object Tv1 1iblk dblk dsize Tsize %full type
1294328 1 16K 4.50K 8K 4.50K 100.00 ZFS plain file
168 bonus System attributes

This file is 4.50 KB in size, but the data size (dsize) is 8 KB because
the on-disk size is in whole sectors.

We'll then get into the guts of the file.

dnode flags: USED_BYTES USERUSED_ACCOUNTED
dnode maxblkid: 0

path /head/sys/arm64/include/bus_dma_impl.h
uid 1001

gid 1001

atime Sat May 9 12:40:22 2015

mtime Sat May 9 12:40:22 2015

ctime Sat May 9 12:40:22 2015

crtime Sat May 9 12:40:22 2015

gen 10832525

mode 100644

size 4139
parent 1247454
Tinks 1

pflags 40800000004
Indirect blocks:
0 LO 0:e1c09620000:3000 1200L/a00P F=1 B=10832525/10832525
segment [0000000000000000, 0000000000001200) size 4.50K

You'll see a bunch of traditional Unix information: permissions,
file name and path, timing, parent object, and more. If you look at this
file with Is(1) the file appears to be 4,139 bytes, but that doesn’t include
any of the ZFS metadata that supports it.

Now let’s consider a larger, 1z4-compressed file.

zdb -ddddd zstore/tmp 3628
“Object Tv1 iblk dblk dsize Tsize %full type
3628 2 16K 128K 244K 896K 100.00 ZFS plain file
168 bonus System attributes

This starts with basic pool information, but then dives into the file

itself. While this file takes 244 KB of disk space, its true size is 896 KB.

Compression reduces the amount of disk space needed.

204

Chapter 10: ZFS Potpourri

After the Unix information, though, we get a list of indirect blocks.

Indirect blocks:

0 L1 0:20edc2ec000:2000 4000L/1000P F=7 B=15965896/15965896

0 LO 0:188fc2c8000:c000 20000L/8000P F=1 B=15965895/15965895
20000 LO 0:188fc2f8000:c000 20000L/8000P F=1 B=15965895/15965895
40000 LO 0:188fc2ec000:c000 20000L/8000P F=1 B=15965895/15965895
60000 LO 0:188fc2e0000:c000 20000L/8000P F=1 B=15965895/15965895
80000 LO 0:188fc2d4000:c000 20000L/8000P F=1 B=15965895/15965895
a0000 LO 0:188fc324000:c000 20000L/8000P F=1 B=15965895/15965895
c0000 LO 0:20834cea000:8000 20000L/6000P F=1 B=15965896/15965896

segment [0000000000000000, 00000000000e0000) size 896K

When a file is larger than the recordsize (dblk), ZFS stores it as
multiple separate blocks. The first column is the offset in the file, in
hex. The number 20,000 in hex is 128 KB. The file in question has an
L1 indirect block, and then seven 128 KB L0 blocks that actually hold
the data, the last of which is actually slightly smaller.

Examining Specific Files

Maybe you want to look at a particular file—say, to see what block size
it was written with. You can't easily extract that from zdao -g, but you
can get a serial or inode number from Is(1) by using the -1 flag. Here,

for some unspeakable reason, we're interested in a MySQL data file.

1s -i /var/mysql/nyaargh/users.MYI
132 /var/mysql/nyaargh/users.MYI

This is file 132 on the zroot/var/mysql dataset.

When you’re working from an inode number, use the -v flag to
zdb(8).

zdb -v zroot/var/mysql 132
Dataset zroot/var/mysql [ZPL], ID 128, cr_txg 18594, 293M, 534 objects

Object Tvi iblk dblk dsize 1size %full type
132 1 16K 6.00K 8K 6.00K 100.00 ZFS plain file

Using four or more -v flags displays the traditional Unix informa-
tion and the indirect blocks. If you have Is(1), you probably have the

traditional Unix information already.

205

Chapter 10: ZFS Potpourri
Metaslabs and Free Space Histograms

Each top-level virtual device is broken up into metaslabs. ZFS fills
space on a metaslab-by-metaslab basis.

When ZFS allocates space, it looks for chunks of disk big enough
to hold the new transaction. When your pool gets full, your only
option when writing data is to break it up into these small chunks of
space that are left. This is why ZFS performance decreases as the pool
fills—the free space becomes fragmented. See how full your metaslabs
are by viewing metaslab histograms.

zdb -mmm media

Metaslabs:
vdev 0
metaslabs 130 offset spacemap free
metaslab 0 offset 0 spacemap 8317 free 4.72G

segments 806 maxsize 4.68G freepct 3%
Each metaslab definition starts with a basic description. Here we're
looking at VDEV 0, which has 130 metaslabs. We then proceed to
metaslab number 0. It’s right at the beginning of the pool, with an oft-
set of 0. This pool has 806 allocations, or segments. Only three percent
of them are free.
We then get a histogram of how blocks in this metaslab are allocat-

ed, as far as the system memory is concerned.

In-memory histogram:

13: 28] ek Fededededefhhddddhn
14 197 %%

15: 189 %

16: 106 #****

17: 27 FwE*

18: 5 %

19: 0

20: 0

31: 0

32: 1=

206

Chapter 10: ZFS Potpourri

The numbers in the first column are block sizes, shown as kilobytes
in powers of 2. 2% = 8,192, so 13 is 8 KB. This metaslab has 281 8 KB
allocations.

Line 14 is 16 KB. This metaslab has 197 16 KB allocations.

Line 15 is 32 KB, with 189 allocations, and so on, all the way up to

a single 2** (or 4 GB) allocation.

After the histogram of the metaslab in memory, we get to see how
the version of the metaslab on the disk looks. On a busy disk, ZFS is

always allocating and de-allocating blocks.

On-disk histogram: fragmentation 0

13: 295 B R i i e e i A A A A R R R R T T i e R e e A A A A A S L
14: 198 ~

15: 189 ~

16: 107 *

17: 29 Tedede N

18: 3 %

32: 1=

Scroll down. No, further. Eventually, you'll come to a later

metaslab that looks considerably different. Metaslab 43, in this case.

metasTab

43

offset 56000000000 spacemap 8280 free 59.1G
segments 17893 maxsize 815M freepct 46%

This metaslab has 17,893 allocations, but is 46 percent free. And

the block size distribution is considerably different.

207

Chapter 10: ZFS Potpourri

In-memory histogram:
13: 8O i kwn

14: 565 *

15: 806 *

16: 994 =

17: 3341 % Yedededede N dededede NN hddd
18: 1452 *

19: 1932 =

20: 4406 * * e % e
21: 1557 *

22: 934 *

23: 488 *

24: 272 k%

25: 103 *

26: 80 *

27: 47 *

28: 19 *

29: 6 *

Our most common allocations are 17 (128 KB) and 20 (1 MB).
The disk gives a hint why this metaslab is only about half full,
though.
On-disk histogram: fragmentation 11
13: 7520 wwwsw e e e e

ONOROR .
|4- 5702 R R R e R R
B R A A R N R RN
. LR e T A e T T A

Note the fragmentation level—11. On the disk, metaslab 43 is
fragmented. This means that many of the chunks of free space are rela-
tively small. With spinning disks, storing chunks of a file contiguously
improves performance. If ZFS needs to write a large block, it'll proba-
bly proceed to a later metaslab.

Descend even further down into the bowels of your metaslabs.

metaslab 121 offset 2000000000 spacemap 0 free
128G
segments 1 maxsize 128G
freepct 100%
In-memory histogram:
37: 1=

208

Chapter 10: ZFS Potpourri

The metaslabs near the end of the disk are made up of contiguous
128 GB chunks. If this pool had previously been nearly full, the high-
er-numbered metaslabs would likely contain bits of data, whereas on
this pool, they are untouched.

ZFS normally divides a VDEV up into 200 metaslabs of equal size.
You can tune this number with the vfs.zfs.vdev.metaslabs_per_vdev
sysctl, but you must set the sysctl before creating the VDEV. The num-
ber 200 was chosen because it seemed to work pretty well, but there’s
lots of room for experimenting with metaslab allocations.

When you expand a VDEV by replacing its disks with larger ones,
ZFS creates new metaslabs to support the increased space. You can get
a pool with far more than 200 metaslabs this way.

ZFS can only keep so many metaslabs in memory at once. Grow-
ing a VDEV to many times its original size can have a negative perfor-

mance impact, as ZFS shuftles metaslabs to and from disk.

Uberblock

What kind of ZFS debugging section would this be without taking a
look at pool’s uberblock?

zdb -u media
Uberblock:
magic = 0000000000babl0c
version = 5000
txg = 15741196
guid_sum = 7884957152936881795
timestamp = 1456030423 UTC = Sat Feb 20 23:53:43 2016

What can you do with this? Not much. But at this point, ZFS pretty
much lies naked and exposed before you.

What else you learn is up to you.

209

Afterword

Allan has gone off to AsiaBSDCon 2016, leaving me to write the
afterword on my own.

Many tools change how we practice systems administration. ZFS
is practically unique, in that the change is for the better. Once you've
used ZFS for a while, other filesystems seem positively quaint. I
administered various iterations of UFS and EXT for two decades, but
after only a few months of using ZFS, the inability to do a uts send
or ufs clone would instantly drive me to a red rage. Fortunately, UFS
does have snapshots, so I was able to regain my composure before too
many people got permanently maimed.

What’s more, this is the last of four books on FreeBSD storage. I'd
like to note that, at long last, I've written a tetralogy. Well, most of a
tetralogy. Yeah, without Allan’s help some of this stuff wouldn’t have
been in here—Allan knows more than I do, and he gave both ZFS
books a depth I couldn’t have alone. And he has hardware I don't, like
multipath SAS, meaning he could write those sections when I simply
couldn’t. And he knew who to ask to get access to hardware neither of
us owned, like NVMe. Yeah, fine, without Allan my tetralogy would
have been a trilogy, and the single ZFS volume would not have been
nearly as good—but that’s not my point. What is my point? Oh, look—

over there! A man-eating platypus! Run away!

211

Sponsors

The following fine folks thought that this book was important enough
that they offered Lucas financial support as he produced it. Ebook
sponsors paid at least $20 for the privilege of getting their name in the
electronic version, while the maniacs who sponsored the print ver-
sion shelled out at least $100 to get their name immortalized on that
edition’s soft, absorbent pages.

Four days after sponsorships went on sale, Lucas’ hot water heater
died. In February. In Michigan. Those initial sponsors almost exactly
covered the cost of the water heater.

Thank you all. Very much.

Dan Langille
TransIP B.V.
Andy Scott
Dirk Tol
Justin Holcomb, in memory of Mary Lou Malott

Adam McDougall
Miguel Moll

Dominik B. Kowal

Lex Onderwater
Alexandre Peyroux pour Angélique, Emma et Thybalt Peyroux
Adrian Jaskuta

213

About the Authors

Allan Jude is VP of operations at ScaleEngine Inc., a global Video
Streaming CDN, where he makes extensive use of ZFS on FreeBSD.
He is also the host of the weekly video podcasts
BSD Now (with Kris Moore) and TechSNAP on
JupiterBroadcasting.com. Allan is a FreeBSD
committer, focused on improving the docu-
mention and implementing libucl and libxo
throughout the base system. He taught FreeBSD
and NetBSD at Mohawk College in Hamilton,
Canada from 2007-2010 and has 13 years of BSD unix sysadmin expe-

rience.

Michael W Lucas is a full time author. His FreeBSD experience is

almost as old as FreeBSD. He worked for twenty years as a sysadmin

Ny e and network engineer at a variety of firms,

4 most of which no longer exist. He’s written a
whole stack of technology books, which have
been translated into nine languages. (Yes, real
4 languages. Ones that people actually speak.)
You can find him lurking at various user
groups around Detroit, Michigan, his dojo

(http://zenmartialarts.com), or at https://www.michaelwlucas.com.

Find the authors on Twitter as @allanjude and @mwlauthor.

215

Never miss a new Lucas release!

Sign up for Michael W Lucas’ mailing list.
https://www.michaelwlucas.com/mailing-lists

More Tech Books from Michael W Lucas

Absolute BSD
Absolute OpenBSD (]st2nd 2nd edition)
Cisco Routers for the Desperate (1st and 2nd edition)
PGP and GPG
Absolute FreeBSD
Network Flow Analysis

the IT Mastery Series

SSH Mastery
DNSSEC Mastery
Sudo Mastery
FreeBSD Mastery: Storage Essentials
Networking for Systems Administrators
Tarsnap Mastery
FreeBSD Mastery: ZFS
FreeBSD Mastery: Specialty Filesystems
FreeBSD Mastery: Advanced ZFS

PAM Mastery (coming soon)

Adaptive Replacement Cache.....121-133,180

COMPIESSEd ..vrevnvreererrceeerereereererreeene 179
efficiency report........coevvinievviencnnncs 126
Memory use...... 123-133
metadata......ooceeineininiiens 130
misses.......... 127-128
MOAifyingocvevevcrercrcrciennes 128-132
Addressed Logical Unitc.ccovereereererneeneene 99

AES-NL...ooiiiiiiiiinicccens 2

w25

..see Adaptive Replacement Cache
It 201
asynchronous reads..........coeevevevierenninnes 163
ASyNChronous Writes.......euveeeerereueererneenee 163
atime (property) 88,145
AULN-GLOUP ..ot 47
autoreplace (property). 118,120
AVAZO .. 101
Bantu.... ... 67
Batman.......e 1
beadm(8) 17-22

activate ... 19
(@ (-1 OSSR 18
dESLIOY ..o 21
list......... 18

mount..
rename....

umount...
BIOS............. .104,118
birthtime.......cceeveveveeeceeeeeeeeeeee e 55
BitTorrent184-185
bookmarks.........ccceereverereeeeeeeeeeenes 76-78
boot environments.... ...16-26
accessing w22
activating.... .19
creating........ooeuevenee .18

and disk encryption
in loader(8)....
removing....
renaming....

bootfs (property) ... e 26
booze, radiatorcvvvivievivirinininiins 23
bp allocated ..o 197
BP COUNL .. 197
bp logical......coeveereeeiereirecrerenereeeins 197
bp physical... .197-198
buffer cacheccocveeuveereniirceinieenes 121-122
cache thrashing......c..ceoecoveeeverenenerernennee 122
cachefile (Property)coevevevivererninnes 142
camcontrol(8) 107-109
canmount (property) ... 15, 22,25

CARP
case-insensitive dataset
checksum........ccocevevevnnee.
casesensitivity (property)ceeee... 45,195

compressed ARCccvcereeerneerecurereencnnenes 179
COMPIESSION ...cuvuvrrririrnnne ... 144-145
compression (property).... ..27,63,72
create time permissions.........ccooeeeeuennne 33-34
creation (Property)cceeeeeeverrenenenenne 77
creation_time.......... ...60
CSMuiiiiiiinniieieisessissssasessessaenns 118
P AL C:) 46-48
Datasets

installationceceevvevcicrcicicnnnn.
date(1)coueueee.
dblk ...,
dedup (property).
deduplication

deferred free.....

Delegationcccouueee
delegating delegating....
descendent permissions..

inheritance
DelPhiX....ceeeeecereeciieeicirecineiencerecsenerneenenes
Design and Implementation of the FreeBSD

Operating Systemcccocvevevccircnnnnen. 9
DESTROYED
devetl(4) .o,
disk controller cardccoeeverererrneeererinnnns 95
disk device nodes........cocvveveerrireenirinesiennnne 5
disk ID labels........ ..7-8
AragonS.......cevuieieieiiieieiniieseesseseeanenes 1
Arink, St eom e 6
dsize........ .204
AUMP(8) cevererrerererrriereieriseeeeeeeasesseeseasenseene 53
DTHACE. ..o cieeeeeeeeeeeeeeeeeeeeeeenene 8-10
DTrace: Dynamic Tracing in Oracle

Solaris, Mac OS X, and FreeBSD.....9-10
embedded_dataccoeeveerrriennieeeennn 73
enclosure path...... .. 98-100
Jetc] Ctlconfu... s 46-48

/tC/@XPOITES..cureieiirieriiicictc e 48-51
Jetc/hosts.allow ... 49
/etc/rc.conf41,49-50
Jetc/sysctl.conf ... 91
[€tC/ZfS/€XPOITSonverreciire s 49-51
1106l 11 <) S 40
file size.....ccvvumevrereciriiiinnes 183-184
filesystem_count (Property)........eceeeeeeene 43
filesystem_limit (property) .. .42
fIFMWALE...eoveeeeeeereereieecereeeeeeeseisesseeserenne 104
Flash Translation Layer.........ccccccvevevniuneen. 112
FreeBSD Mastery

Specialty Filesystems.........ccecvvuvuuenenee 46

Storage Essentials........coeeevereueeeeneennnne 1

ZES...ooiiniiennns 1,16,45,83,87
freebsd-update(8)cccewuevueemeruermeerereennnee 15,18
freebsd-version(8)ccceuvevveveeievereenrererennns 18
FreeNAS................ .45
from@uid ... 60

24 SO OO 122,126-127,132
JOUrNAl(8)...cvuuveereieieiiriiinirisiieenneenee 93
glabel(8)ceuevuevucecrcrennee .8,92
Globally Unique Identifierc.cccccovvueuunnn 5
gmultipath(8)cccceeevuenee 106-112
GPATL(8) oo 92
GPT labels....... .6
GPTID labels............. 7
groupused (Property).......eeereeeereerereeneene 36
GRUB ...t 26

INOC.cuciurereeeririseireieeeseesees e easeeseneaae 205
intelligent prefetch.........ccccoeuuueee. see prefetch
Internet Small Computer System Interface
... see iSCSI
I/O schedulingcccccvcuveurcuureuncnnnee 159-160
ISCSLeiiiicicces 45,46-48,87,89,92
INItIALOT ..o 46
target... ...46-48
ISEGL(B) cevvverereeerrrerurrereeuseierasesseseeaseaseiseaseseane 46
FAEL(8) v 39
jailed (property). ...39-42
jails oo 38-42
JBOD ... 106
kern.geom.label.disk_ident.enable................ 8
kern.geom.label.gptid.enable............cccce....... 7
kernhz ..., 171
kernel memory reaper . .. 130
Khoisan ..o 67
KStAtS.ZES covvevvenceneerevcererencerenseneeenne .. 125
kstat.zfs.misc.vdev_cache_stats.hits.......... 152
kstat.zfs.misc.vdev_cache_stats.misses..... 152
Labels, diSK cueoveeeeeeeeeeeeeeeeeee e 4-8
large_blockccvvuvieiimiiciiciiieicnnes 73,184
latency ..c..cocveecrcenene .. 159-162
Least Recently Used.cccoovuvuueiuenne 121,151
Level 2 ARC....cooovvvverreeeennes 132-136,145,180
MEMOTY USE...ecvevvrirererrrirerenennsesennans 133
Leventhal, Adam... 156,160
loader, bOOt ... 23
locate lights............ 100-101,105
logbias (Property).......ccvvivereviveererninnes 184
Logical Block Addressing..........cocveereuncenee 113
Logical Unit Numbercccocuvueieuunenn 46-48
LRU ..oorcecrercnenne see Least Recently Used
LSI e 101

LUN46-48

L2ARC ..o see Level 2 ARC
10103007 {3 ¢ () TP 67
metadata 174-178

MEtASIAD ...eceerereeereeiere e 206-209
mirror
depth.cecccreerecereceeeene 187
splitting 187-189
IAULL(8) e 101
Most Frequently Used... 122,124,126,132
Most Recently Used.......cccoeeuenneee 122,124,126
MOUNE(8) vvvieeererineerereeeeeereeee e eresenees 93
mountpoint (property) . 22,27,63
MPIutil(8) e 101
mpsutil(8)coeuuenee 101-103
show adapters........ccoceeeereeeencrnecunenncn. 101
show devices....... 101-102
show enclosures102-103
MPLULIL(8) cevveveerrereeeererreeeereieireireiseeeereieeanes 101
MFU....... .. see Most Frequently Used
MRU....... .. see Most Recently Used
multipath ..o 105-113
configuration..
device nodes...
MOAES c.cvrvrcvnrerererceeiereeeneneenes
mode, changing..........cccovcvivevrerniuncen. 111
viewing
MyISAM
MySQL....covivvicrrennnes
Network Addressing Authorityccc...... 99
Network File System 45,48-51
configuration files........coceveveeenneee. 48-49
V2/V3 oo 49-50
VA ottt 50-51
NEWES(8) ceveveeieererieeeeteeeererce e 92
NES ..o see Network File System
Non-Volatile Memory Express........... 114-118
DOOLING ..t 118
cables ... 118
NAMESPACES ..evrvrviiiiiieisiisieseseseresenens 115
performanceoceceeneenecerecnncenenee 116
NVMe.......see Non-Volatile Memory Express
NIVITIE(4) ovevevivereteeereteeee et esesenens 114
nvmecontrol(8)coceevevevevererevererennen. 115-118
0CCUIE IT o eseeeeeeesenieee 9
PC-BSD...oiiiiciieiccieicciseseseiesesesenaennns 26
performance........coecvecencenencerecnnenns 143-172
PErmission Sets.......cvuiiiiiniiiiiininns 36-37
persistent LZARC ..., 133
PLALYPUS oo eseeserennes 211
pools, destroyed.........cocvevivinenirenrenninnns 194
POrt MUltiplier.......ccueveeeeeeeereeeereieeeeeeneireieeenenne 95
portal group...... .46-47
POIal-GrOUP ..cocveeveervreeeeirieeeireiseeeeeneaneneane 47

PostgreSQL........ccccovvvunnnee. 24-25,178,182-183

prefetch ... 127,151-153

primarycache (property)......131-132,134,180
PIANtE(1) coeecicecrecceecreee e 60
QUEUEL ...evminnrircrinieiaiiieesesssessanes 112-113,114
queue, I/O 162-166

large VDEVS.....couneunerirercicnnes 166-167
RAID ..ot 56
readonly (property).. ... 66

1€DOOL(8) cvvviererevierereereevevenen
receive_resume_token (property)..........79-80
recordsize (property)133,173- 178 184-185

refreServationoeeeeeeeeeeeeeeeeeeeeeenenn. 3,88-89
TEPLICAtION......vueceieieireeceeecree e 53-86
automation............ ...80-86

cloning on receipt ...

debugging75
deduplication. 72
differential...... 66-67

incremental.......
path (changing)....
recursive............

resumable... 78-80

roll back.. e 74
TESEIVAtION...ovviiuiirieiircccrceee e 3
LESIIVETINg ...eoveveieieiicrcicrecceiaes 119

performance.. 171-172
TPCDINA(8)..ceueeirieiieicirecieieecrecreeecreene 49
ISYNC(8) ceveverrrnracnnenne 53-55,57

snapshot modecooceveerecereenencenecane 55
ISYNCS TNOMLcenrenrenrenreeeansrsesesensesesnessesnene
SAF-TE ..evirreerereeeniereeerieessesenesessesseenens
5aS2IrCU .ovuvnceincnnines

scrub performance
SCSI Accessed Fault-Tolerance Enclosure

SCSI Enclosure Servicesccocoernennes 95-96

Pathcecccccccrcenne
secondarycache (property).
seek time........ceveveveverererennns
SEGMENtscouevennenn.
Separate Intent Log ..
SEITAl e

Server Message BlOcKccovuueeureererncurennee 45
Service Management Facilitycc...cc..... 118
SES i see SCSI Enclosure Services
ses(4)

B o1 (C:) DT 96-98,108-109
short stroking.......c.cceceeevevcvcvcnnen. 185-186
sleep(1)

SLOG....

SMB ...t

sharenfs (property)... 49-51,72,88
snapshot_count (property)cocoeeecereences 43
sNAPShot_limit ..o 42
SNAPSPEC....cuvuunne .189-191

Solid State DisK.......ccceevererererererererennes 112-113

endurance ..., 136

and write amplification ... 178
Sparse VOIUMES.........c.cvcveeeueeeerernecrncneenens 88-90
SPLEEN .o 80
SSD ... see Solid State Disk
SSH(1) evverereretereterereeteteee e 61,64

and zxfer........ooiveicinines 85
SSH MaStery ..o 61
ssh-copy-id(1).. .63
SSh-KeYen(1) ...ccevurueemcrurreeerenerrerceeeeeneceeanens 62
streaming filescccoecvvuvcineiniciennnes 134-135
sync (property) 140-142,183
synchronous mode..........cccocuvuuevnnneee 138-142
SyNchronous reads..........ceeeeereeecereererneeenne 162
synchronous writes. . 162
SYSCLI(8) vevruererreremrrreeneireiseereiseeseeseeseseeeene 143
1220 4 @ 0 TR 40
thin provisioning..........cccccvvvvrivrrneinnce. 88-90

throughput............
toguid.....

Turbo Warmup Phase
[5¢SO see Transaction Groups

userused (property) 36
vdev_childrenoooeeeeeeeceicceeccee 200
vfs.usermount .. 30-31,63
VES.ZES oot 125
vis.zfs.arc_free_target ... 130
vis.zfs.arc_max................ . 129
vfs.zfs.arc_meta_limit........ccoooeerererererenenen. 130
VES.2£5.arC_MIN oveviieceeeeceeee e 129
vis.zfs.dirty_data_max.......... 140,155,167-168
vfs.zfs.dirty_data_max_percent................ 155
vis.zfs.dirty_data_max_max...
vfs.zfs.12arc_noprefetchcocovererrierennee
vfs.zfs.12arc_write_boostcccceuerererenenen.
vfs.zfs.]2arc_write_max
vfs.zfs.max_recordsize......
vfs.zfs.prefetch_disable ..
vis.zfs.txg.timeout.......

vfs.zfs.vdev.cache.bshift .
vfs.zfs.vdev.cache.max....
vfs.zfs.vdev.cache.size.....
vis.zfs.vol.mode.......ccuevevererereeeeeeeeeene

vis.zfs.vdev.async_write_active_

max_dirty_percent.......c..eceeeee.. 167,169
vis.zfs.vdev.async_write_active_

min_dirty_percent.........cceceeenee. 167,169
vfs.zfs.vdev.async_read_max_active......... 163
vfs.zfs.vdev.async_read_min_active.......... 163
vfs.zfs.vdev.async_write_max_active

.. 164,168
vis.zfs.vdev.async_write_min_active......... 164
vfs.zfs.vdev.metaslabs_per_vdev
vis.zfs.resilver_delay......cccocovevcvnenee. 171-172
vis.zfs.resilver_min_time_ms.........cc.o...... 172
vis.zfs.scan_idleoovceevererrnneeeirieeinnns 171
vfs.zfs.scrub_delay........ 171-172
vis.zfs.top_maxinflight........ccceovevininennce. 172
vfs.zfs.vdev.scrub_max_active.. .. 164
vfs.zfs.vdev.scrub_min_active 164
vfs.zfs.vdev.sync_read_max_active........... 163
vis.zfs.vdev.sync_read_min_active 163
vfs.zfs.vdev.sync_write_max_active.......... 164
vfs.zfs.vdev.sync_write_min_active.......... 164
vis.zfs.vdev.trim_on_init........ccccevveuennneeee 113
VINSEAL(8) et 143,146
volblocksize (property) 88,173-177
volmode (property).........cocoveveurennce 88,90-91
WOLVES ...ttt sessssaessssessaesns
World Trade Organization .
write amplificationccocveeuveeerncerecenenees
write throttle 135,158-159,170-170
KATGS(1) cevevervrecrnrerueeeeieeiesseisessesseeseseesseseeanes 60
XEraDB ..ot 180-181
ZAD(8) e 196-209

0N datasetsccerereeerererreerenennas 202-203

ON fI€S v 205

ON ODJECES .ovvuerrrcrnercrreracerennenaennes 203-205
zfs(8)

allow

bookmark...

create

destroy

diff...........

L SPACE ...t 3

TECEIVE...vvvverereerreene 53,59,64-71,73-75

TOIIDACK. ..ottt 66

send..... .53,59-61,64-75

SEL ittt 50

SNAPSNOL ..o 58,63
ZFS deadlist Mapc.ccveeereeereerecererenncnnenee 200
ZFS Intent Log....... ..136-141,199
ZFS dIirectoryoceveeveevieveurerrininrenisinseninnns 199
ZFS plain file.............. . 199
ZFS user/group used.... ...200
BT (0) J 118-120
ZESEOOLS vt 28
ZES-SEALS e 125-128,143

ZIL i see ZFS Intent Log

zpool(8)

cache device......vvurernerneerernceneererneenenne 132
destroy......
get guid.....
import...
iostat
Online....ceieciicc s
TEGUIA wovreveenceereeeerersceeesereeseeserseeene
split

zpool.cache..........

zstreamdump(8)c.ceeereueereerreereeererneenne

ZVOL oo naes 87-93
creating..... 87,89,91
EStIOYING wvuvvrevneereereeeererrercererreaeeseaees 88
TENAMING ...vvvinivereiireiereeeeteeenenne 88
sparse........ ..88-90

ZXLRT oot 80-86
arguments.............. 81-82
keeping snapshots.........c.ccecvevvurvieennne. 83
pull mode............... ..82-83
properties.... ..84-85
Tecursion81
rotating snapshots. .83
take snapshots........ .86
ssh options...... .85
VEIDOSE c.cveverreraerraranseneeeeseneenaeseneens 81

	_GoBack
	h.nbn8ecbj1om6
	h.llejcjm75mh
	h.ndo1b0oos5hr
	h.9txo15lpjtj7
	h.dp1xjhmju1ik
	h.x0ep7ot4ggb2
	h.ek87agt0ly62
	h.fq8kxl7o2u0a
	h.ewostbs6ay
	h.mzork9c0h4rx
	h.2rg0yhysvx5f
	h.avj9isd1khe1
	h.uptyqxy8du4s
	h.vy7yhgvq7cdu
	h.mx0c631pk93b
	h.1yk903n741yr
	h.ojlht4pbxll1
	h.mav8yl8o9qq3
	h.h47rlwti8kgj
	h.l9at4hb0ym41
	h.4sbz5zr7ejzo
	h.3gwsoj7tu47g
	h.m2qyupu0857q
	h.j39617i96g1o
	h.qcl0k4z9b55t
	h.mko923q21i24
	h.2wix6huvhgt7
	h.8m3fkehcmr07
	h.e8362uxsw0za
	h.p970pgzb9hqn
	h.o76bhhaem9dl
	h.xv7xhxr8dvve
	h.tnv3rwmb5q6i
	h.qj5touf07bcb
	h.mh3wwjmdi2u
	h.5mwju4om2o15
	h.dcizzcmv5610
	h.jc5vjciixx08
	h.k7p87jfi0omd
	h.bhama9x7yyik
	h.ypt1f9yg05ls
	h.s9kg8b9jmdf
	h.5mdu5j8lnyyp
	h.gdt0ru1w3ujs
	h.n4595gjmi6k
	h.exom47ed1o43
	h.kqq5zpxmrnmw
	h.yhk6rursngsi
	h.ze9d8xrx84fq
	h.mzqa48dr7qye
	h.tv4alhiljowe
	h.s501c352ldql
	h.ltzeykk15l71
	h.ush5ytqpgx2v
	h.vreae4q9l9qi
	h.yoyugovbyn64
	h.cu591r40ov5a
	h.w3k1ywazpovy
	h.fantp9z353cp
	h.ahiat0pwqmm7
	h.i9svn0eouk35
	h.8liyiuib6cz4
	h.nv5u3lcjwmo5
	h.xmrzzyvu2v2b
	h.7a0yv63gyyws
	h.e8zoj8jtjpl2
	h.e440iy6gukm7
	h.b9i3v8c18hjn
	h.ds10dk3pcoad
	h.ghw5jsodnbbb
	h.8xgsjqyl8p5l
	h.cxgpy74nunj4
	h.uqaql8dsazck
	h.evdfk2bxrtw9
	h.6rhsk36yanuw
	h.dbwesk282ol2
	h.kuhd8f6ho7kp
	h.r0tj2mvmiahm
	h.km0ps1izsnpb
	h.yygwkh6j81qz
	h.c0g2k8sa9cso
	h.tjyxvbm92je8
	h.c2l6p2su2hwl
	h.tac6vn2kfs9r
	h.awvgk1kbf244
	h.l5fsce57rncz
	h.5v3i3j2x15
	h.8gxxd5b7vwu5
	h.itflryx48txn
	h.kjhj9vmrp30c
	h.eppjr1tf9mfr
	h.8vlxa82vik2n
	h.rqrfh63yvb78
	h.s0x7d1phzc9t
	h.ohwra31p17wt
	h.tj98c4ve04am
	h.52jyau1uqtx5
	h.voguqr3joyl
	h.3fajrm1hciww
	h.mheisftjq96u
	h.t1qbi3ldis0j
	h.19ie66zbor12
	h.a3bs5ksijzwz
	h.k8xqwlo32x2
	h.20l32ongquro
	h.asft1b3q50pw
	h.u88xvhtdblic
	h.epr7a2u9gfdl
	h.qfum8b6hvlec
	h.ngox8yzbnnz1
	h.ai8hd3xrjhsb
	h.ldzkz0kboihf
	h.lo087fglbx27
	h.hkxh1nl0tsmw
	h.5vau7kcs6v84
	h.we1j8hp31xr9
	h.wahrv3p92689
	h.5pbvfwneomvk
	h.sc13abxv62bp
	h.8ioia3tkib97
	h.kkhllwy6ytwv
	h.nsye6nfzr4gu
	h.i81oe654cprn
	h.6u3ftwa25mrm
	h.bm723d3g1z3o
	h.r0bi68d2ca48
	h.8pvsae8t260r
	h.wgkg9eqr7sss
	h.quakj67cixj
	h.psw8nz5sojmq
	h.l3zuffz0asq9
	h.utd8rfbm6l9u
	h.kmxz57ra8p9k
	h.ln403ssg7ld9
	h.p11vqjthfzw7
	h.5moqwzwcaobv
	h.1woz4xh6l941
	h.y07fu1v0jy2j
	h.qded0s5o4boz
	h.me1l9r5a8ngm
	h.yogo7lqupfjj
	h.i6x3szjrk1ad
	h.k3zdrk5dztup
	h.4fsbr94bqe6j
	h.eymtm7cjbs4x
	h.fcndwss0r1tm
	h.2hckdosxxrsj
	h.gdy7vgvtjixt
	h.nqx6ztr89bga
	h.j94aoo669mw
	h.o5smdqneci6c
	h.e505tiiue9lc
	h.84azqqk8rewc
	h.4110cfpefpxh
	h.87sk32kgigtc
	h.xb9s2ceqjxko
	h.uuizdl7sqima
	h.6rsgwvvgyx3w
	h.91b0zx4twg5b
	h.rnc4socsky4a
	h.13hlrez72fg
	h.5lihe5bnby22
	h.dq0ahaued1ba
	h.d1xzamn4torv
	h.8stumm5bxh7f
	h.hgku0riz8lyv
	h.36theituu2ck
	h.uenf6tggbe4y
	h.ol2me78rxe4k
	h.5oqyg9aq8oxe
	h.2878kg6o30la
	h.btuuf6usekq9
	h.1h2mhrknzf2p
	h.2tk9qtsvfhup
	h.n9qlpebkf5tg
	h.k3uro4ib8nkb
	h.if6u2qmez29a
	h.6si1ohrn2xvq
	h.xfdnkms4t8am
	h.tf5y2o27bu35
	h.j5fdurc5c5n9
	h.ecps4u32zprg
	h.4ubmf5nyie2j
	h.n3r5yp81ls29
	h.7x9uvc67dys5
	h.xfya55417kmx
	h.kdc6p3fgqer2
	h.ei2zynq0icl
	h.6hluxqbkyno0
	h.78dpvgyws03a
	h.l2uksr1ykh72
	h.379uu2l5sabx
	h.3e0y972bate0
	h.xeb2dhd4lyxz
	h.3xmuquegezco
	h.lizjf44rwmed
	h.hfbvid2xx81w
	Chapter 0: Introduction
	Chapter 1: Boot Environments
	Chapter 2: Delegation and Jails
	Chapter 3: Sharing Datasets
	Chapter 4: Replication
	Chapter 5: ZFS Volumes
	Chapter 6: Advanced Hardware
	Chapter 7: Caches
	Chapter 8: Performance
	Chapter 9: Tuning
	Chapter 10: ZFS Potpourri
	Afterword
	Sponsors
	About the Authors

	Chapter 0: Introduction
	Prerequisites
	ZFS Best Practices
	Space Management
	Picking a VDEV Type
	The Importance of Labels

	Labeling Disks
	GPT Label (Manual)
	GPTID Label (Automatic)
	Disk Ident Label (Automatic)
	Glabel (Manual)

	DTrace
	Book Overview

	Chapter 1: Boot Environments
	Installation Datasets
	Using Boot Environments
	Viewing Boot Environments
	Creating Boot Environments
	Activating Boot Environments
	Renaming Boot Environments
	Removing Boot Environments

	Boot Environments and ZFS
	Accessing Unused Boot Environments

	Boot Environments at Boot
	Boot Environments and Applications
	Moving Application Data
	Creating New Datasets
	Disk Encryption and Boot Environments

	Chapter 2: Delegation and Jails
	ZFS Delegation
	Adding Permissions
	Revoking Permission

	Delegation Inheritance
	Create Time Permissions
	Permission to change permissions
	Permission Sets
	Delegation and Jails
	Jailing a Dataset
	Building a ZFS Delegation Jail
	Defining Limits and Safety Belts

	Chapter 3: Sharing Datasets
	SMB
	iSCSI
	Target Configuration

	Network File System
	NFS Configuration Types
	Enabling NFSv2/v3
	Configuring NFSv2/v3 via ZFS
	Enabling NFSv4
	Configuring NFSv4 via ZFS
	Debugging ZFS NFS

	Chapter 4: Replication
	But I Have Rsync!
	Why Replicate?
	Basic Replication
	Local Replication
	Viewing Replicas

	Remote Replication
	Replication Users and Datasets
	Dataset Full Remote Replication
	Incremental Replication
	Incremental Replication Assumptions
	Differential Replication
	SSH Bandwidth Limitations

	The Complexities of Incremental Replication
	Recursive Replication
	Advanced Sending Options
	Sending Properties
	Deduplicated Data Stream
	Debugging and Testing
	Large and Small Blocks

	Advanced Receiving Options
	Path and Mount Management
	Roll Back Changes
	Debugging and Testing
	Cloning on Receipt

	Bookmarks
	Resumable Send
	Automating Replication
	Using zxfer
	Zxfer Pull Mode
	Rotating Snapshots
	Keeping Old Snapshots
	Properties and Disaster Recovery
	More Zxfer Options

	Chapter 5: ZFS Volumes
	Creating, Destroying, and Manipulating ZFS Volumes
	Sparse Volumes
	Volume Mode
	volmode at Command Line
	Default volmode

	Accessing zvols

	Chapter 6: Advanced Hardware
	SCSI Enclosure Services
	Examining your Enclosure
	Enclosure Path
	Keeping the lights on

	Controlling Host Bus Adapters
	Adapter Details
	Display Enclosures

	sas2ircu
	Viewing Hardware
	sas2ircu Locate Lights

	SAS Multipath
	Why Multipath?
	Multipath Modes
	Identifying Disks
	Configuring multipath
	Multipath Device Nodes
	Manual Multipath Configuration
	Viewing Multipath
	Changing Multipath Mode

	SSDs
	NVMe
	Viewing NVMe Devices
	NVMe Performance
	NVMe GEOM Providers and Booting

	zfsd

	Chapter 7: Caches
	Adaptive Replacement Cache
	Traditional Buffer Cache
	ARC Design
	ARC Memory Use
	Zfs-stats

	Modifying the ARC
	Restricting ARC Size
	Metadata and the ARC
	Datasets and the ARC

	Level 2 ARC
	L2ARC Memory Use
	L2ARC Caching
	Streaming Files
	L2ARC Write Speed

	ZFS Intent Log
	Sync and Async Transactions
	ZFS Intent Log
	Separate Intent Log
	Per-Dataset ZIL Tuning
	Synchronous Writes through the Stack

	zpool.cache

	Chapter 8: Performance
	What Is Performance?
	ZFS and Performance
	zpool iostat
	Current & Ongoing Pool Activity
	Virtual Device Activity

	ZFS Prefetch
	Per-VDEV Prefetch
	Per-File Prefetch

	Transaction Group Tuning
	txg Timing
	txg Size
	txg Duration and Contents
	Write Throttle

	I/O Scheduling
	Measuring Latency and Throughput

	I/O Queues
	Per-VDEV Requests
	Scheduling Large VDEVs

	Asynchronous Writes and Transaction Group Sizes
	Throttling Writes
	Scrub and Resilver Performance

	Chapter 9: Tuning
	ZFS Stripe Allocation
	Mirrors and Stripes
	RAID-Z1
	RAID-Z2
	RAID-Z3
	Striped Mirrors
	Changing the allocation size
	Recommendations

	Databases and ZFS
	All Databases
	MySQL – InnoDB/XtraDB
	MySQL – MyISAM
	PostgreSQL

	Tuning for File Size
	Small Files
	Big Files

	The Worst of Both Worlds: Bittorrent
	Short Stroking

	Chapter 10: ZFS Potpourri
	Splitting Mirrors
	Make Mirrors Deeper
	Splitting the Pool

	SnapSpec
	Snapshot Range
	Specify by Age
	Snapshot Slaughter

	Recovering Destroyed Pools
	Recoverable Pools
	Non-Recoverable Pools
	Rename Pool at Recovery

	Cloning Machines
	Case-Insensitive Filesystem
	ZFS Deep Dive: zdb(8)
	Block Statistics
	Detailed Block Statistics
	ZFS Configuration

	Dataset Information
	Dataset Basics
	Dataset Detail
	Examining Specific Objects
	Examining Specific Files
	Metaslabs and Free Space Histograms
	Uberblock

	Afterword
	Sponsors
	About the Authors
	_GoBack
	_GoBack

